Electronic Supplementary Information for

CoS₂ Nanoparticles–Graphene Hybrid as Cathodes Catalysts for Aprotic Li-O₂ Batteries

Zhiyang Lyu,^a Jian Zhang,^a Liangjun Wang,^b Kaidi Yuan,^b Yanping Luan,^a Peng Xiao,^a and Wei Chen^{a,b,c,*}

^aDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore ^bDepartment of Physics, National University of Singapore, 2 Science Drive 3, 117543, Singapore ^cNational University of Singapore (Suzhou) Research Institute, Suzhou, China.

Fig. S1 Low-resolution SEM image of CoS_2/RGO hybrid and the corresponding particle size distribution in the inset.

Fig. S2 EDX spectra (a) and N_2 adsorption/desorption isotherms (b) of the CoS_2/RGO hybrid. In (b), the N_2 adsorption/desorption isotherms of the RGO was also presented.

Fig. S3 Full discharge–charge curves of the $Li-O_2$ cell with CoS_2/RGO cathode and $LiClO_4$ -DMSO electrolyte at a current density of 0.1 A g⁻¹.

Fig. S4 Low-resolution SEM images for the pristine electrode (a), after discharge (b) and after recharge (c) for clear comparison at the 0.1 A g^{-1} rate and first full discharge-charge states.

Fig. S5 The performances of the Li-O₂ cells with CoS_2/RGO hybrid cathodes and LiClO₄-DMSO electrolytes at different current densities (A g⁻¹) and different limited capacities. (a) 500 mAh g⁻¹ @ 0.1 A g⁻¹. (b) 1000 mAh g⁻¹ @ 0.1 A g⁻¹. (c) 500 mAh g⁻¹ @ 0.2 A g⁻¹. (d) 1000 mAh g⁻¹ @ 0.2 A g⁻¹. (e) 600 mAh g⁻¹ @ 0.3 A g⁻¹. (f) 500 mAh g⁻¹ @ 0.5 A g⁻¹.

Fig. S6 FTIR spectrum of CoS₂/RGO hybrid at pristine and after 10th charge states.

Fig. S7 The performances of the Li-O₂ cells with CoS_2/RGO cathodes and LiCF₃SO₃-TEGDME electrolytes in comparison with those of the LiClO₄-DMSO electrolytes based Li-O₂ cells. (a) First full discharge–charge curves at the rate of 0.1 A g⁻¹. (b) Discharge–charge curves at the rate of 0.1 A g⁻¹ and a limited capacity of 500 mAh g⁻¹.

In comparison with the LiClO₄-DMSO electrolyte based Li-O₂ cell, the Li-O₂ cell with LiCF₃SO₃-TEGDME electrolyte demonstrated a higher ORR overpotential (~0.28 V) upon discharge at a current density of 0.1 A g⁻¹ (Fig. S7a). Especially, no obvious charge platform was observed and a small charge capacity was obtained. This meant that the cell with LiCF₃SO₃-TEGDME electrolyte owned a very weak capability of oxidizing the Li₂O₂ upon charge, leading the lower round-trip efficiency (the ratio of discharge to charge voltage). As a result, the cycle stability was also unsatisfied (Fig. S7b).