Electronic Supplementary Material (ESI) for RSC Advances.

Electronic supplementary information

Synthesis
2-acetyl-5-bromothiophene, N,N-dimethylaminobenzaldehyde, 5-Formyl-2-thienylboronic Acid, Dichlorobis(triphenylphosphine)palladium(II), cyanoacetic acid were purchased commercially without further purification. 4-(6-methylbenzothiazol-2-yl)phenylhydrazine was synthesized by Nippon Chemical Works. Solvents and other chemicals were used as received.

General procedure 1 for the preparation of $\mathbf{3 a - c}$
To a stirred solution of 2-acetyl-5-bromothiophene (1 mmol) and respective benzaldehyde (1 mmol) in $\mathrm{EtOH}(3 \mathrm{ml})$ was added $15 \% \mathrm{NaOH}$ aq $(0.2 \mathrm{ml})$. The solution was stirred overnight and added small amount of water. The resulting precipitate was filtered and washed with water then EtOH. The crude solid was purified by recrystallization from EtOH or column chromatography on silica gel.

General procedure 2 for the preparation of $\mathbf{4 a - c}$
To a stirred solution of $\mathbf{3}(1 \mathrm{mmol})$ and 4-(6-methylbenzothiazol-2-yl)phenylhydrazine (1 mmol) in EtOH (6.5 ml) were added a few drops of $37 \% \mathrm{HCl}$. The solution was refluxed overnight. The reaction mixture was cooled to room temperature and extracted with water/EtOAc. The organic layer was dried over MgSO_{4} and evaporated. The crude solid was purified by recrystallization from $\mathrm{EtOH} / \mathrm{THF}$ or column chromatography on silica gel.

General procedure 3 for the preparation of 5a-c
4 (1 mmol), 5-Formyl-2-thienylboronic Acid (1.5 mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.5 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (0.01 mmol) were dissolved in THF (6 ml)/EtOH (3 ml) and refluxed overnight. After the reaction completed, the mixture was cooled to room temperature and extracted with water/EtOAc. The organic layer was dried over MgSO_{4} and concentrated by evaporation. The crude product was purified by recrystallization or column chromatography on silica gel.

General procedure 4 for the preparation of the pyrazoline photosensitizers ($\mathbf{6 a - c}$)
5 (1 mmol), cyanoacetic acid (3 mmol), piperidine (3.3 mmol) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ and refluxed for . After the reaction completed, the mixture was cooled to room temperature and diluted with EtOAc, and then washed with HCl aq and water. The organic layer was dried over MgSO_{4} and concentrated by evaporation. The crude product was purified by recrystallization.

Synthesis of compound 3a
Compound 3a was synthesized according the general procedure 1 and obtained as a yellow solid.

Yield $49 \%{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.05(\mathrm{~s}, 6 \mathrm{H}), 6.68(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=15.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=$ $15.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 40.1,117.8,115.0,121.5,122.2,130.6,130.8,131.2$, 145.5, 147.9, 152.2, 180.9. Elemental analysis calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \operatorname{BrNOS}$ (336.25): C 53.58, H 4.20, N 4.17, S 9.54; found: C 53.20, H 4.16, N 4.41, S 9.58.

Synthesis of compound 3b
Compound 3b was synthesized according the general procedure 1 and obtained as a yellow solid. Yield 81 \%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H})$, $1.80(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=6.6 \mathrm{~Hz} 3 \mathrm{H}), 6.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J$ $=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (400 MHz, CDCl_{3}) $\delta 14.0,22.6,25.7,29.1,31.6,68.2,115.0,117.9,122.3,127.0,130.4$, 131.3, 131.4, 144.6, 147.4, 161.6, 180.9. Elemental analysis calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrO}_{2} \mathrm{~S}$ (393.34): C 58.02, H 5.38, S 8.15; found: C 57.9, H 5.40, S 7.29.

Synthesis of compound 3c
Compound 3c was synthesized by 2 steps. First, carboxyl functionalized chalcone was obtained according to the general procedure 1 using terephthaldehydic acid (Yield 68%). Then esterification using EtBr with $\mathrm{K}_{2} \mathrm{CO}_{3}$ was carried out to afford $\mathbf{3 c}$ as a white solid. Yield 88%. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.40(\mathrm{q}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 7.16(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.08(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.3,61.3,122.4,123.4,128.3,130.1$, $131.5,132.1,138.6,143.1,146.8,165.9,180.5$. Elemental analysis calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrO}_{3} \mathrm{~S}$ (365.24): C 52.61, H 3.59, S 8.78; found: C 52.24, H 3.58, S 8.91 .

Synthesis of compound 3d
Compound 3d was synthesized according the general procedure 1 and obtained as a yellow solid. Yield $39 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ $(\mathrm{m}, 3 \mathrm{H}), 7.60(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 120.5,122.9,128.5,129.0,131.4,131.8,134.5,144.7,147.1,180.9$. Elemental analysis calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrOS}$ (291.96): C 53.26, H 3.09, S 10.94; found: C 52.90, H 3.26, S 13.23.

Synthesis of compound 4a

Compound 4a was synthesized according the general procedure 2 and obtained as an orange solid. Yield $99 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~s}, 6 \mathrm{H}), 3.13(\mathrm{dd}, J=17.4,5.1 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.88(\mathrm{dd}, J=17.4,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=11.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.06(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1$ H), $7.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{br}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (400 MHz , DMSO) $\delta 20.9,43.1,62.4,112.6,113.0,113.2,121.5,121.6,123.0,126.4,127.7,128.1,128.4,128.6,131.2$, 134.0, 134.3, 137.0, 144.8, 145.3, 149.8, 151.8, 166.2. HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}, 573.0777$; found, 573.0760.

Synthesis of compound 4b
Compound $\mathbf{4 b}$ was synthesized according the general procedure 2 and obtained as a yellow solid. Yield $85 \%{ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}) $\delta 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H})$, 1.73 (m, 2 H), $2.45(\mathrm{~s}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=17.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=6.5,2 \mathrm{H}), 4.00(\mathrm{dd}, J=17.4$, $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=12.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.14(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{br}, 1 \mathrm{H}), 7.77$ (br, $1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right) \mathrm{CO}\right) \delta 14.3$, $21.4,23.3,26.4,32.3,44.2,64.1,68.6,114.1,114.3,115.9,122.2,122.8,125.1,128.0,128.5,128.7$, $129.1,131.9,134.4,135.5,135.6,138.9,145.4,146.9,153.5,159.8,167.4$. Elemental analysis calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{BrN}_{3} \mathrm{OS}_{2}$ (630.66): C 62.85, H 5.11, N 6.66, S 10.17; found: C $63.21, \mathrm{H} 5.12, \mathrm{~N} 6.90, \mathrm{~S}$ 9.63.

Synthesis of compound 4c
Compound $\mathbf{4 c}$ was synthesized according the general procedure 2 and obtained as a yellow solid. Yield 52%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.46(\mathrm{~s}$, $3 \mathrm{H}), 3.11$ (dd, $J=17.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=16.9,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.1,2 \mathrm{H}), 5.41$ $(\mathrm{dd}, J=12.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2$ H), $7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.3,21.5,43.4,61.1$, $63.7,113.3,114.8,121.2,122.0,124.9,125.8,126.6,127.6,128.5,130.3,130.4,130.7,134.6,134.8$, $137.4,143.3,145.4,146.1,152.4,166.0$, 167.1. Elemental analysis calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ (602.56): C 59.80, H 4.01, N 6.97, S 10.64; found: C 59.51, H 4.08, N 7.29, S 10.55.

Synthesis of compound $\mathbf{4 d}$

Compound $\mathbf{4 d}$ was synthesized according the general procedure 2 and obtained as a yellow solid. Yield 28%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.46(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{dd}, J=16.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J$ $=16.9,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=12.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.9,2 \mathrm{H}), 7.23(\mathrm{~m}, 6 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 20.9, 43.0, 62.6, 112.9, 113.4, 121.5, 121.6, 123.3, 125.6,
127.6, 128.2, 128.8, 129.1, 131.2, 134.0, 134.3, 136.7, 141.3, 144.8, 145.2, 151.8, 166.1. Elemental analysis calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{~S}_{2}$ (529.03): C 61.13, H 3.80, N 7.92, S 12.09; found: C $61.53, \mathrm{H} 4.22$, N 7.73, S 11.59.

Synthesis of compound 5a
Compound 5a was synthesized according the general procedure 3 and obtained as a yellow solid. Yield $86 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~s}, 6 \mathrm{H}), 3.18(\mathrm{dd}, J=17.3,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.93$ (dd, $J=17.3,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=11.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1$ H), $7.62(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 8.03(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.91(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 20.9,43.1,62.6,112.6$, $113.1,121.5,121.6,123.2,125.8,126.4,127.5,127.7,128.1,128.4,129.3,134.0,134.3,135.8$, 136.6, 139.2, $141.5,144.8,145.1,149.8,151.8,166.1,183.8$. Elemental analysis calcd for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{OS}_{3}$ (604.81): C 67.52, H 4.67, N 9.26, S 15.91; found: C 67.56, H 4.70, N 9.19, S 14.98.

Synthesis of compound $\mathbf{5 b}$
Compound $\mathbf{5 b}$ was synthesized according the general procedure 3 and obtained as an orange solid. This compound was used for next step without further purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}) $\delta 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{dd}, J=$ $17.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=6.5,2 \mathrm{H}), 4.04(\mathrm{dd}, J=17.1,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=12.0,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 4 \mathrm{H}), 7.48(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75,(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~m}, 4 \mathrm{H}), 9.94(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right) \mathrm{CO}\right) \delta 14.2,21.4,23.2,26.3,32.2,44.2,64.2,68.4,114.1,115.8,122.1$, $122.7,125.1,125.9,127.6,127.8,128.3,129.0,134.1,135.3,135.5,137.4,138.2,138.9,143.1$, $145.2,146.3,146.5,153.3,160.0,167.3,183.5$.

Synthesis of compound $\mathbf{5 c}$

Compound $5 \mathbf{c}$ was synthesized according the general procedure 3 and obtained as an orange solid. Yield $72 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{dd}, J=$ $17.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=17.5,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.1,2 \mathrm{H}), 5.84(\mathrm{dd}, J=12.2,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.91(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (400 MHz , DMSO) $\delta 14.1,20.9,42.8,60.6,62.5,113.0,121.5,121.6,123.6,125.9,126.1,127.5,127.7,128.3$, $129.3,129.7,130.0,134.0,134.4,136.1,136.2,139.2,141.7,144.7,144.8,145.0,146.5,151.8$, 165.2, 166.0, 183.8. Elemental analysis calcd for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{3}$ (633.80): C 66.33, H 4.29, N 6.63, S
15.18; found: C 66.00 , H 4.30, N 6.75 , S 14.77.

Synthesis of compound 5d

Compound 5d was synthesized according the general procedure 3 and obtained as an orange solid. This compound was used for next step without further purification. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{dd}, J=17.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=17.4,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dd}, J=12.1$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.61$ (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65,(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=$ 4.0, 1 H), $9.91(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 20.9,43.1,62.8,113.0,121.5,121.6,123.4$, $125.6,125.9,127.5,127.7,128.2,129.1,129.5,134.0,134.3,136.0,136.3,139.1,141.3,141.6$, $144.8,144.9,145.0,151.8,166.1,183.8$.

Synthesis of compound 6a

Compound $6 \mathbf{a}$ was synthesized according the general procedure 4 and obtained as a dark red solid. Yield 79 \%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 2.43$ (s, 3 H), 2.85 ($\mathrm{s}, 6 \mathrm{H}$), 3.19 (dd, $J=17.3,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.94$ (dd, $J=17.3,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{dd}, J=12.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.11(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1$ H), $7.68(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.48$ (s, 1 H$).{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 20.9,43.1,62.6,112.7,113.2,121.5,121.6,123.2,126.4$, $127.4,127.7,128.1,128.4,129.4,131.0,134.3,135.7,136.7,144.8,145.0,149.8,151.8,163.3$, 166.1. HRMS (ESI, m/z): [M-H] calcd for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}_{3}, 670.1411$; found, 670.1405.

Synthesis of compound 6b
Compound $\mathbf{6 b}$ was synthesized according the general procedure 4 and obtained as a dark red solid.
Yield $91 \%{ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}) $\delta 0.84(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~m}, 4 \mathrm{H}), 1.36(\mathrm{~m}, 2 \mathrm{H})$, $1.66(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{dd}, J=17.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{t}, J=6.5,2 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H})$, $5.67(\mathrm{dd}, J=11.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{br}, 1 \mathrm{H}), 7.61,(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1$ H), $7.82(\mathrm{~m}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right) \mathrm{CO}\right) \delta 14.2$, $21.4,23.2,26.3,32.2,44.2,64.2,68.4,114.1,115.8,122.7,125.1,125.9,127.6,127.8,128.3,129.0$, $129.2,134.1,135.3,135.5,137.4,138.2,143.1,145.2,146.3,146.5,153.3,159.7,167.3,183.5$. HRMS (ESI, m / z): $[M-H]^{-}$calcd for $\mathrm{C}_{41} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{3}, 727.1877$; found, 727.1869.

Synthesis of compound $\mathbf{6 c}$

Compound 6c was synthesized according the general procedure 4 and obtained as a dark red solid. Yield $75 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{dd}, J=$
$17.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=17.4,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.1,2 \mathrm{H}), 5.84(\mathrm{dd}, J=12.2,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta$ $14.1,20.9,60.6,62.6,113.1,116.6,121.5,121.6,123.6,125.7,126.2,127.4,127.7,128.3,129.3$, $129.8,130.0,134.0,134.4,134.6,136.0,136.2,144.8,146.5,151.8,163.4,165.2,166.0$. HRMS (ESI, m/z): $[M-H]^{-}$calcd for $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}, 699.1200$; found, 669.1199 .

Synthesis of compound 6d
Compound $\mathbf{6 d}$ was synthesized according the general procedure 4 and obtained as a dark red solid. Yield 69 \%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{dd}, J=17.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00$ (dd, $J=17.4,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dd}, J=12.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 4 \mathrm{H})$, $7.35(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69,(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 8.00(\mathrm{~d}, J=4.4,1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (400 MHz , DMSO) $\delta 20.9,43.0, ~, 113.0,121.5$, 121.6, 125.6, 127.7, 128.2, 129.1, 129.6, 134.0, 134.3, 141.3, 145.0, 151.8, 166.1. Elemental analysis calcd for $\mathrm{C}_{35} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{3}$ (628.11): C 66.85, H 3.85, N 8.91; found: C 66.97, H 4.16, N 8.60.

Figure $\mathrm{S} 1 . \mathrm{H}^{1} \mathrm{NMR}$ spectra of $\mathbf{3 a}$.

Figure S2. C ${ }^{13}$ NMR spectra of $\mathbf{3 a}$.

Figure S3. H^{1} NMR spectra of $\mathbf{3 b}$.

Figure S4. C ${ }^{13}$ NMR spectra of $\mathbf{3 b}$.

Figure $\mathrm{S} 5 . \mathrm{H}^{1} \mathrm{NMR}$ spectra of $\mathbf{3 c}$.

Figure $\mathrm{S} 6 . \mathrm{C}^{13} \mathrm{NMR}$ spectra of $\mathbf{3 c}$.

$\begin{array}{lllllllllllllllllllllllllllll}8.9 & 8.8 & 8.7 & 8.6 & 8.5 & 8.4 & 8.3 & 8.2 & 8.1 & 8.0 & 7.9 & 7.8 & 7.7 & 7.6 & 7.5 & 7.4 & 7.3 & 7.2 & 7.1 & 7.0 & 6.9 & 6.8 & 6.7 & 6.6 & 6.5 & 6.4 & 6.3 & 6.2 & \mathrm{ppm}\end{array}$
 BRUKER

Figure S7. H^{1} NMR spectra of $\mathbf{3 d}$.

Figure S8. C ${ }^{13}$ NMR spectra of $\mathbf{3 d}$.

Figure $\mathrm{S} 9 \mathrm{H}^{1}$ NMR spectra of $\mathbf{4 a}$.

Figure S10. C^{13} NMR spectra of $\mathbf{4 a}$.

Figure $\mathrm{S} 11 . \mathrm{H}^{1}$ NMR spectra of $\mathbf{4 b}$.

Figure S12. C^{13} NMR spectra of $\mathbf{4 b}$.

Figure S13. H^{1} NMR spectra of $\mathbf{4 c}$.

Figure S14. C^{13} NMR spectra of $\mathbf{4 c}$.

Figure S15. H^{1} NMR spectra of $\mathbf{4 d}$.

Figure S16. C^{13} NMR spectra of $\mathbf{4 d}$.

Figure S17. H^{1} NMR spectra of $\mathbf{5 a}$.

Figure S18. C^{13} NMR spectra of $\mathbf{5 a}$.

Figure $\mathrm{S} 19 . \mathrm{H}^{1}$ NMR spectra of $\mathbf{5 b}$.

Figure S20. C^{13} NMR spectra of $\mathbf{5 b}$.

Figure S21. H^{1} NMR spectra of $\mathbf{5 c}$.

Figure S22. C^{13} NMR spectra of $\mathbf{5 c}$.

Figure $\mathrm{S} 23 . \mathrm{H}^{1}$ NMR spectra of $\mathbf{5 d}$.

Figure S24. C^{13} NMR spectra of $\mathbf{5 d}$.

Figure S25. H^{1} NMR spectra of $\mathbf{6 a}$.

Figure S26. C^{13} NMR spectra of $\mathbf{6 a}$.

Figure S27. H^{1} NMR spectra of $\mathbf{6 b}$.

Figure S28. C^{13} NMR spectra of $\mathbf{6 b}$.

Figure S29. H^{1} NMR spectra of $\mathbf{6 c}$.

Figure $\mathrm{S} 30 . \mathrm{C}^{13}$ NMR spectra of $\mathbf{6 c}$.

Figure S31. H^{1} NMR spectra of $\mathbf{6 d}$.

Figure S32. C^{13} NMR spectra of $\mathbf{6 d}$.

Figure S33. Absorption spectra of $\mathbf{6 a}-\mathbf{6 d}$ adsorbed on TiO_{2}.

Table S1. Photovoltaic parameters of all obtained data measured under AM $1.5 \mathrm{G}\left(100 \mathrm{~mW} / \mathrm{cm}^{2}\right)$.

Dye	$J_{\text {sc }}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$V_{\text {oc }}(\mathrm{mV})$	FF	$\eta(\%)$
$\mathbf{6 a}$	10.4 ± 0.1	656 ± 3	0.74 ± 0.00	5.1 ± 0.1
$\mathbf{6 b}$	9.53 ± 0.11	641 ± 0	0.74 ± 0.00	4.5 ± 0.0
6c	8.80 ± 0.07	624 ± 2	0.73 ± 0.01	4.0 ± 0.0
6d	9.04 ± 0.06	620 ± 1	0.73 ± 0.00	4.1 ± 0.0

The tendency between dye structure and solar cell performance was reproducible.

Table S2. Photovoltaic parameters of DSSCs with a double-layer TiO_{2} film employing 6a-d measured under AM $1.5 \mathrm{G}\left(100 \mathrm{~mW} / \mathrm{cm}^{2}\right)$.

Dye	$J_{\text {sc }}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$V_{\text {oc }}(\mathrm{mV})$	FF	$\eta(\%)$
$\mathbf{6 a}$	12.3	636	0.73	5.7
$\mathbf{6 b}$	11.4	622	0.73	5.1
$\mathbf{6 c}$	10.5	608	0.73	4.6
$\mathbf{6 d}$	10.0	579	0.70	4.1

