Supporting Information

N-(7-chloroquinolinyl-4-aminoalkyl)arylsulfonamides as antimalarial agents: Rationale for the Activity with reference to Inhibition of Hemozoin Formation

Saroj verma^a, Shashi Pandey^b, Pooja Agarwal^c, Pravesh Verma^d, Shreekant Deshpande^a, Jitendra Kumar Saxena^d, Kumkum Srivastava^b, Prem M.S. Chauhan^a, Yenamandra S Prabhakar^{a*}

^aMedicinal and Process Chemistry Division, ^bParasitology Division, ^cBiochemistry Division, Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow-226 031, India

AUTHOR INFORMATION

*Corresponding author, Phone:+91-522-2772450; Fax:+91-522-2771941; E-mail: yenpra@yahoo.com (Y.S. Prabhakar)

Comd	β-Hematin inhibitory activity									
Coma.	0.5 μg	1 µg	2 μg	2.5 μg						
4	21	34	48	63						
5	26	42	51	66						
6	23	39	51	63						
7	24	41	52	64						
8	14	21	32	43						
9	20	36	47	66						
10	12	19	28	42						
11	17	24	36	49						
12	19	33	48	59						
13	14	21	27	36						
14	19	33	45	57						
15	22	42	56	68						
16	23	44	56	67						
17	33	53	64	78						
18	16	29	42	51						
19	15	27	42	53						
CQ	8	19	29	34						

Table S1. β -hematin formation inhibition activity of N-(7-chloroquinolinyl-4-aminoalkyl) arylsulfonamides at different concentration.

Table S2. Physicochemical characteristics of R group of N-(7-chloroquinolinyl-4-aminoalkyl) arylsulfonamides.

	Substituti	on	MR	MR	MR	π	π	π	σp	σp	σp	R	R	R	F	F	F	H-Accept
Comd.	R	n	2	4	6	2	4	6	2	4	6	2	4	6	2	4	6	4
4	Н	3	1.03	1.03	1.03	0	0	0	0	0	0	0	0	0	0	0	0	0
5	Н	2	1.03	1.03	1.03	0	0	0	0	0	0	0	0	0	0	0	0	0
6	<i>p</i> -F	3	1.03	0.92	1.03	0	0.14	0	0	0.06	0	0	-0.34	0	0	0.43	0	0
7	<i>p</i> -F	2	1.03	0.92	1.03	0	0.14	0	0	0.06	0	0	-0.34	0	0	0.43	0	0
8	<i>p</i> -Br	3	1.03	8.88	1.03	0	0.86	0	0	0.23	0	0	-0.17	0	0	0.44	0	0
9	<i>p</i> -Br	2	1.03	8.88	1.03	0	0.86	0	0	0.23	0	0	-0.17	0	0	0.44	0	0
10	p-NO ₂	3	1.03	7.36	1.03	0	-0.28	0	0	0.78	0	0	0.16	0	0	0.67	0	1
11	p-NO ₂	2	1.03	7.36	1.03	0	-0.28	0	0	0.78	0	0	0.16	0	0	0.67	0	1
12	<i>p</i> -CH ₃	3	1.03	5.65	1.03	0	0.56	0	0	-0.17	0	0	-0.13	0	0	-0.04	0	0
13	<i>p</i> -CH ₃	2	1.03	5.65	1.03	0	0.56	0	0	-0.17	0	0	-0.13	0	0	-0.04	0	0
14	<i>p-t</i> -butyl	3	1.03	19.62	1.03	0	1.98	0	0	-0.2	0	0	-0.13	0	0	-0.07	0	0
15	<i>p-t</i> -butyl	2	1.03	19.62	1.03	0	1.98	0	0	-0.2	0	0	-0.13	0	0	-0.07	0	0
16	2,4,6-tri-iPr	3	14.96	14.96	14.96	1.53	1.53	1.53	-0.15	-0.15	-0.15	-0.1	-0.1	-0.1	0.05	0.05	0.05	0
17	2,4,6-tri-iPr	2	14.96	14.96	14.96	1.53	1.53	1.53	-0.15	-0.15	-0.15	-0.1	-0.1	-0.1	0.05	0.05	0.05	0
18	<i>p</i> -C ₆ H ₅	3	1.03	25.36	1.03	0	1.96	0	0	0.01	0	0	-0.08	0	0	0.08	0	0
19	<i>p</i> -C ₆ H ₅	2	1.03	25.36	1.03	0	1.96	0	0	0.01	0	0	-0.08	0	0	0.08	0	0

Figure S1. Conserved fasciclin domains of the P.f HDP in protein sequence.

Gen	HREAD	ER Sc	ores (align	ments	displa	iyed a	gainst	the first of the input se	quences)			
Conf.	Net Score	p- value	PairE	SolvE	Aln Score	Aln Len	Str Len	Seq Len	View Alignment	SCOP Codes	CATH Codes	Structure	CATH Entry
HIGH	51.549	3e-04	-159.1	-13.0	199.0	140	146	205	Display 1x3bA0 Alignment	Search SCOP for 1x3bA	Search CATH for 1x3b	87-	CATH Summary
MEDIUN	41.813	0.003	-129.9	-4.9	155.0	137	297	205	Display 1070A0 Alignment	Search SCOP for 1070A	Search CATH for 1070		CATH Summary
MEDIUN	139.735	0.005	-41.4	-1.8	167.0	133	137	205	Display 1w7dA0 Alignment	Search SCOP for 1w7dA	Search CATH for 1w7d		CATH Summary
LOW	35.903	0.012	-129.2	2-7.4	110.0	131	131	205	Display 2vxpA0 Alignment	Search SCOP for 2vxpA	Search CATH for 2vxp	×	CATH Summary
LOW	31.382	0.034	-139.9	9.4	<mark>64.</mark> 0	179	373	205	Display 2fgtA0 Alignment	Search SCOP for 2fgtA	Search CATH for 2fgt	Mar .	CATH Summary

Figure S2. Gen THREADER Scores for the selection of templates for HDP modeling.

aln.pos	10	20	30	40	50	60	
1070 HDP _consrvd	AENGALRKFY	EVIMDNGGA	/LDDINSLTEV	/TILAPSNEA	WNSSNINNVL	RDRNKMRQILN	MHIIKDRL
_aln.p	70	80	90 1	100	110	120 1	.30
1070 HDP _consrvd	NVDKIRQKNA	NLIAQVPTVI	NNNTFLYFNVF MKNRFYYNLII	RGEGSDTVIT	VEGGGVNATV TRSGGLRKPQ	IQADVAQTNGY KVTNDPESINF	VHIIDHVL KVYWCFEH
_aln.pos 1X3B 1070 HDP _consrvd	140 -SGMGTVMDV GVPYTTVLGP KPVKRTIINI *	150 TLKGDNRFSMI TLESDPMMSD TYSHNELKII	160 LVAAIQSAGLI IYKMGKFSHFN FSNLLNHPTVO	170 TETLNRE NDQLNNT SSLIHELSL *	180 -GVYTVFAPT QRRFTYFVPR DGPYTAFFPS * * *	190 NEAFRALF DKGWQKTELDY NEAMQLINIES	200 PRERSRLL PSAHKKLF FNKLYNDE
_aln.pos 1X3B 1070 HDP _consrvd	210 GDAKELAN MADFSYHSKS NKLSEFVLNH	220 HILKYHIGDE- SILERHLAISI IVIKE YWLYRI	230 ILVSGGI DKEYTMKDLVH DLYGSSYQPWI	240 GAL KFSQESGS MYNEKREAP	250 VRLKSLQGDK VILPTFRDSL EKLRNLLNND *	260 LEVSLKNNV SIRVEEEAGRY LIVKIEGEFKH	270 VSVN VIIWNY-K CNHSIYLN
_aln.pos 1X3B 1070 HDP _consrvd	280 KEPVAEPDIM KINVYRPDVE GSKIIRPNME *	290 MATNGVVHVI CCTNGIIHVII CCHNGVVHIVI ** *	300 INVLQPSGPSS DYPLLEEKDVV DKPIIF	5G 7V			

Figure S3. Multiple sequence alignment of *P.f*-HDP with FAS1 domain of human (PDB; 1X3B) and FAS1 domain of drosophila melanogaster (PDB; 1070).

Figure S4. (a, b) Ramchandran (φ , ψ angle) plots and (c, d) PROSA plots of *Pf*-HDP homology model and model after MD simulations (10ns). In Ramchandran plots red, dark yellow, light yellow and white regions represent the favored, allowed, "generously allowed" and disallowed regions as defined by ProCheck. In ProSA plot, the z-score indicates overall model quality. Its value is displayed in a plot that contains the z-scores of all experimentally determined protein chains in current PDB. Black dot indicate the comparable quality of homology structure of *Pf*-HDP to experimentally developed structures.

Figure S5. Pf-HDP ERRAT plot after (a) homology modeling and (b) molecular dynamic simulation of 10 ns.

Table S3. *Pf* -HDP 3-D structural variation data during molecular dynamic simulation (3-10 ns). The bold text residues maintained their structural characteristics during MD simulation.

Equilibra tion time		Ramachan	dran plot:		Errat plot	Free energy of folding (VADAR)	Variation in 3-D structure		
ns	Core	Allow	Gener	Disall	Overall quality factor	K cal/mol	Alpha	Beta	
3	84.30%	13.50%	2.20%	0.00%	84.70	-166.64	I511NLIYS, S65NLLN, S75SLI, N94EAMQLIN, F105NKLYNDE, K114LSEFVLNHVTK, Q139PWL	Y7NLI, L14YTR, Y87TAFF P, K153LR, D161LI , I166EG, K171HC, G194VVHI V	
4	91.90%	7.60%	0.50%	0.00%	90.36	-167.65	P46VK, I51INLI , N59ELKIF SNLL N, S75SL, E95AMQLINI, F105NKLY, K114LS, V119LNHVTKEY, Q139PWLMYNE	Y7NLI, L14YTR , D30PE, N35RK, Y87TAFF P, K153LR , D161LI , M189KC, G194VVHI V	
5	89.20%	10.30%	0.50%	0.00%	81.10	-174.61	P46VK, I51INLI YS, N59EL, I63F SNLL N, N94E AMQ LINIE, F105NKLY, K114LSEFVLNHVTKEY, Y138QPWLMYNE	Y7NLI, L14YTR , Q25KVT, V38YW, Y87TAFF P, K153LR , D161LI , I166EG, K171HC, G194VVHI V	
6	89.70%	8.60%	1.60%	0.00%	86.56	-172.7	I51INLIYS, K62IFSNLLN, S75SLI, N94EAMQLINIE, F105NKLY, K114LSEFVLNHVTKEY, Q139PWLMYNE	Y7NLI, L14YTR, D30PE, N35RK, Y87TAFFP, K153LR, D161LI, G194VVHIV	
7	91.90%	7.00%	1.10%	0.00%	86.40	-172.35	I51INLIYS, N59ELKIFSNLLN, S75SLI, N94EAMQL, F105NKLYND, K114LSEFVLNHVTKEY, Q139PWLMYNE,	Y7NLI, L14YTR, D30PE, N35RK, Y87TAFF, K153LR, D161LI, I166EG, K171HC, M189KC, G194VVHI	
8	90.80%	7.60%	1.10%	0.50%	88.83	-177.08	I51INLIYS, N59ELKIFSNLLN, S75SLI, A96MQL, F105NKLY, K114LSEFVLNHVTKEY, Y138QPWLMYNE,	Y7NLI, L14YTR , D30PE, N35RK, Y 87TAF F, K153LR , D161LI , M189KC, G194VVHI	
9	88.60%	10.30%	0.00%	1.10%	83.53	-175.13	I51INLIYS, N59ELKIFSNLLN, N94EAMQL, F105NKLYND, K114LSEFVLNHVTKEY, Q139PWLMYN	Y7NLI, L14YTR, D30PE, N35RK, Y87TAFFP, K153LR, D161LI, M189KC, G194VVHIV	
10	89.2%	9.2%	1.1%	0.5%	84.97	-173.23	I51INLIYS, K62IFSNLLN, S75SL, N94EAMQ, F105NKLY, K114LSEFVLNHVTKEY, Y138QPWLMYNE	Y7NLI, L14YTR, D30PE, N35RK, Y87TAFFP, K153LR, D161LI, M189KC, G194VVHIV	

6. Synthesis

Experimental: Synthesis: The ¹H NMR (300, 400 MHz) and ¹³C NMR (100MHz) spectra were recorded in CDCl₃ and DMSO-d₆, used as solvents on DPX-400 Bruker FT-NMR spectrometer. Chemical shifts are reported in parts per million d (ppm) with the residual protons of the solvent as reference. The splitting pattern abbreviations are as follows: s (singlet), d (doublet), dd(double doublet) and m (multiplet). Coupling constants are given in hertz. Mass Spectra (ESI-MS), high resolution mass spectra HRMS (ESI-HRMS) were recorded on Jeol (Japan)/SX-102, Agilent 6520 Q-Tof (ESI HRMS) spectrometers correspondingly. Analytical thin-layer chromatography (TLC) was carried out on Merck's precoated silica-gel plates 60 F254 and spots were visualized by irradiation with UV light (254 nm). Iodine was used as developing agent. Column chromatographic purification was performed over silica gel (230–400 mesh) using a gradient solvent system (hexene/ethylacetate) as the eluent unless otherwise specified. All chemicals and reagents were obtained from Aldrich (USA), Lancaster (UK) or Spectrochem Pvt. Ltd (India) and were used without further purification.

N-(3-(7-chloroquinolin-4-ylamino)propyl)benzenesulfonamide (4).

White solid; Yield 70%; Mp: 192-194°C; ¹H NMR (300 MHz, DMSO-d₆) δ = 8.38 (d, 1H, *J* = 5.2 Hz), 8.22 (d, 1H, *J* = 9.0 Hz), 7.79-7.77 (m, 3H), 7.71-7.61 (m, 1H), 7.61-7.53 (m, 2H), 7.46 (dd, 1H, *J* = 2.0 Hz, *J* = 8.9 Hz), 7.23 (brs, 1H), 6.41 (d, 1H, *J* = 5.4 Hz), 3.25-3.23 (m, 2H), 2.90-2.86 (m, 2H), 1.78-1.74 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 151.9, 150.2, 148.9, 140.4, 133.6, 132.5, 129.3, 127.3, 126.5, 124.2, 124.1, 117.5, 98.8, 40.6. 40.1. 27.9; ESI-MS: m/z 376 [M+H]⁺. HRMS (ESI TOF (+)) calcd for [C₁₈H₁₈ClN₃O₂S + H⁺] 376.0881 found 376.0884.

N-(2-(7-chloroquinolin-4-ylamino)ethyl)benzenesulfonamide (5).

White solid; Yield 73%; Mp: 162-165°C; ¹H NMR (300 MHz, CDCl₃) δ =8.40 (d, 1H, *J* = 5.3 Hz), 7.92-7.88 (m, 3H), 7.74 (d, 1H, *J* = 8.9 Hz), 7.61.7,50(m, 3H), 7.34 (dd, 1H, *J* = 1.8 Hz, *J* = 8.8 Hz), 6.21 (d, 1H, *J* = 5.3 Hz), 3.20-3.19 (m, 2H), 1.3-1.27 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 151.6, 150.1, 148.6, 140.3, 133.8, 132.5, 129.3, 127.2, 126.5, 124.4, 124.0, 117.4, 98.6, 42.2, 40.8; ESI-MS: m/z 362 [M+H]⁺. HRMS (ESI TOF (+)) calcd for [C₁₇H₁₆ClN₃O₂S + H⁺] 362.0752 found 362.0754.

N-(3-(7-chloroquinolin-4-ylamino)propyl)-4-fluorobenzenesulfonamide (6).

White solid; Yield 73%; Mp: 197-199°C; ¹H NMR (300 MHz, DMSO-d₆) δ = 8.39(d, 1H, *J* = 5.4 Hz), 8.21 (d, 1H, *J* = 9.0 Hz), 7.85-7.72 (m, 4H), 7.46-7.35 (m, 3H), 6.41 (d, 1H, *J* = 5.3 Hz), 3.25-3.23 (m, 2H), 2.90-2.88 (m, 2H), 1.78-1.74 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ =163.2, 152.3, 150.3, 149.5, 137.2 133.8, 129.9, 129.8, 127.9, 124.4, 117.9, 116.8, 116.6, 99.1, 40.9, 40.6, 28.2; ESI-MS: m/z 394 [M+H]⁺. HRMS (ESI TOF (+)) calcd for [C₁₈H₁₇ClFN₃O₂S + H⁺] 394.0787found 394.0756.

N-(2-(7-chloroquinolin-4-ylamino)ethyl)-4-fluorobenzenesulfonamide (7).

Pale yellow; Yield 75%; Mp: 179-182°C; ¹H NMR (300 MHz, DMSO-d₆) δ = 8.38 (d, 1H, J = 5.0 Hz), 8.14 (d, 1H, J = 9.0 Hz), 7.89-7.88 (m, 4H), 7.36-7.26 (m, 3H), 6.42 (d, 1H J = 5.3 Hz), 3.38-3.18 (m, 2H), 3.05-3.02 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 162.9, 151.8, 150.0,

148.8, 136.7, 133.7, 129.6, 129.5, 127.3, 124.4, 124.0, 117.4, 116.5, 116.3, 98.7, 42.1, 40.8; ESI-MS: m/z 380 $[M+H]^+$. HRMS (ESI TOF (+)) calcd for $[C_{17}H_{15}ClFN_3O_2S + H^+]$ 380.0630 found 380.0636.

4-bromo-N-(3-(7-chloroquinolin-4-ylamino)propyl)benzenesulfonamide (8).

White solid; Yield 68%; Mp: 168-170 °C; ¹H NMR (400 MHz, DMSO-d₆) δ = 8.39 (d, 1H, *J* = 5.4 Hz), 8.21(d, 1H, *J* = 9.0 Hz), 7.80-7.77(m, 4H), 7.70 (d, 2H, *J* = 8.6 Hz), 7.45 (dd, 1H, *J* = 2.1 Hz, *J* = 8.9 Hz), 7.25-7.22 (m, 1H), 6.40 (d, 1H, *J* = 5.5 Hz), 3.26-3.20 (m, 2H), 2.92-2.87 (m, 2H), 1.79-1.74 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 151.9, 150.6, 149.1, 140.1, 134.0, 132.7, 128.9, 127.6, 124.6, 124.5, 117.8, 99.1, 40.9, 40.2 28.2; ESI-MS: m/z 454 [M+H]⁺. HRMS (ESI TOF (+)) calcd for [C₁₈H₁₇BrClN₃O₂S + H⁺] 453.9886 found 453.9979.

4-bromo-N-(2-(7-chloroquinolin-4-ylamino)ethyl)benzenesulfonamide (9).

Pale yellow; Yield 71%; Mp: 155-153°C; ¹H NMR (400 MHz, DMSO-d₆) $\delta = 8.39$ (d, 1H, J = 5.2 Hz), 8.13 (d, 1H, J = 9.0 Hz), 7.98-7.95 (m, 1H), 7.79 (d, 1H, J = 2.9 Hz), 7.73-7.68 (m, 4H), 7.47 (dd, 1H, J = 2.1 Hz, J = 9.0 Hz), 7.28-7.25 (m, 1H), 6.41 (d, 1H, J = 5.4 Hz), 3.38-3.35 (m, 2H), 3.07-3.02 (m, 2H),; ¹³C NMR (100 MHz, DMSO-d₆) $\delta = 151.4$, 150.2, 148.5, 139.7, 133.9, 132.3, 128.5, 127.1, 126.3, 124.5, 124.0, 117.4, 98.7, 42.1, 40.8; ESI-MS: m/z 440 [M+H]⁺. HRMS (ESI TOF (+)) calcd for [C₁₇H₁₅BrClN₃O₂S + H⁺] 439.9830 found 439.9822.

N-(3-(7-chloroquinolin-4-ylamino)propyl)-4-nitrobenzenesulfonamide (10).

Pale yellow; Yield 64%; Mp: 149-150°C; ¹H NMR (400 MHz, DMSO-d₆) δ = 8.35-8.33 (m, 3H), 8.21-8.18 (m, 2H), 8.15-8.12 (m, 1H), 8.03-8.00 (m, 2H), 7.84-7.83 (m, 1H), 7.62 (dd, 1H, J = 2.1 Hz, J =9.0 Hz), 6.60 (d, 1H, J = 6.3 Hz), 3.39-3.34 (m, 2H), 3.00-2.97 (m, 2H), 1.83-1.76(m, 2H), ¹³C NMR (100 MHz, DMSO-d₆) δ =152.8, 149.5, 147.4, 146.0, 143.6, 136.0, 129.6, 128.2, 127.0, 125.7, 124.8, 123.5, 116.4, 98.7, 40.4, 40.2, 27.6; ESI-MS: m/z 421 [M+H]⁺. HRMS (ESI TOF (+)) calcd for [C₁₈H₁₇ClN₄O₄S + H⁺] 421.0732 found 421.0726.

N-(2-(7-chloroquinolin-4-ylamino)ethyl)-4-nitrobenzenesulfonamide (11).

Pale yellow; Yield 60%; Mp: 151-152°C; ¹H NMR (400 MHz, DMSO-d₆) $\delta == 8.36-8.34$ (m, 3H), 8.26-8.21 (m, 3H), 8.05-8.01 (m, 1H), 7.75(s, 1H), 7.45 (d, 1H, *J* =8.9 Hz), 6.54 (d, 1H, *J* =5.3 Hz), 4.16-4.12 (m, 2H); 3.70-3.65 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) $\delta =$ 152.3, 151.0, 150.0, 149.3, 143.8, 134.1, 129.9, 127.9, 126.2, 125.2, 124.8, 124.2, 123.1, 117.7, 99.0, 48.2, 42.7; ESI-MS: m/z 407 [M+H]⁺. HRMS (ESI TOF (+)) calcd for [C₁₇H₁₅BrClN₄O₄S + H⁺] 407.0575 found 407.0564.

N-(3-(7-chloroquinolin-4-ylamino)propyl)-4-methylbenzenesulfonamide (12).

White solid; Yield 69%; Mp: 160-162°C; ¹H NMR (300 MHz, DMSO-d₆) δ = 8.44 (d, 1H, J = 5.3 Hz), 8.13 (d, 1H, J = 8.9 Hz), 7.86 (s, 1H), 7.74 (d, 2H, J = 7.8 Hz), 7.40-7.32 (m, 3H), 6.49

(d, 1H, J = 5.2 Hz), 3.48-3.42 (m, 2H), 3.12-3.06 (m, 2H), 2.37 (s, 3H), 1.99-1.90 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) $\delta = 151.8$, 150.2, 148.9, 142.7, 137.5, 133.6, 129.7, 127.3, 126.6, 124.2, 124.1, 117.5, 98.8, 40.6, 40.1, 27.8, 21.0; ESI-MS: m/z 390 [M+H]⁺. HRMS (ESI TOF (+)) calcd for [C₁₉H₂₀ClN₃O₂S + H⁺] 390.1038 found 390.1075.

N-(2-(7-chloroquinolin-4-ylamino)ethyl)-4-methylbenzenesulfonamide (13).

Pale yellow; Yield 63%; Mp: 156-158°C; ¹H NMR (300 MHz, DMSO-d₆) δ = 8.38 (d, 1H, *J* = 5.4 Hz), 8.16 (d, 1H, *J* = 9.0 Hz), 7.79(s, 1H), 7.75 (d, 1H, *J* = 5.6 Hz), 7.67(d, 2H, *J* = 8.2 Hz), 7.49 (dd, 1H, *J* = 2.0 Hz, *J* = 9.0 Hz), 7.35-7.24 (m, 2H), 6.42 (d, 1H, *J* = 5.5 Hz), 3.34-3.31 (m, 2H), 3.01-2.99 (m, 2H), 2.32 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 151.5, 150.3, 150.3, 148.2, 142.8, 139.3, 137.4, 133.9, 129.7, 128.2, 126.9, 126.5, 125.0, 124.5, 124.1, 117.3, 98.6, 42.1, 40.8, 34.4, 30.5, 21.1; ESI-MS: m/z 376 [M+H]⁺. HRMS (ESI TOF (+)) calcd for [C₁₈H₁₈ClN₃O₂S + H⁺] 376.0881 found 376.0890.

4-tert-butyl-N-(3-(7-chloroquinolin-4-ylamino)propyl)benzenesulfonamide (14).

White solid; Yield 72%; Mp: 163-165°C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.46$ (d, 1H, J = 5.3 Hz), 7.90 (d, 1H, J = 2.0 Hz), 7.78-7.74 (m, 3H), 7.51-7.49 (m, 2H), 7.36 (dd, 1H, J = 2.1 Hz, J = 8.9 Hz), 6.32 (d, 1H, J = 5.3 Hz), 5.74-5.72 (m, 1H), 3.56-3.52 (m, 2H), 3.13 (t, 2H, J = 6.0 Hz), 1.93-1.87 (m, 2H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 155.5$, 151.8, 149.9, 149.0, 137.4, 133.3, 127.4, 126.3, 125.9, 124.0, 117.4, 98.6, 40.5, 34.7, 30.7, 27.8; ESI-MS: m/z 432 [M+H]⁺. HRMS (ESI TOF (+)) calcd for [C₂₂H₂₆ClN₃O₂S + H⁺] 432.1507 found 432.1502.

4-tert-butyl-N-(2-(7-chloroquinolin-4-ylamino)ethyl)benzenesulfonamide (15).

White solid; Yield 68%; Mp: 161-162°C; ¹H NMR (400 MHz, DMSO-d₆) $\delta = 8.37$ (d, 1H, J = 6.4 Hz), 8.18 (d, 1H, J = 9.7 Hz), 7.82 (t, 1H, J = 5.9 Hz), 7.78 (d, 1H, J = 2.2 Hz), 7.72-7.69 (m, 2H), 7.52-7.50 (m, 2H), 7.47 (dd, 1H, J = 2.2 Hz, J = 9.0 Hz), 7.33-7.30 (m, 1H), 6.39(d, 1H, J = 5.5 Hz), 3.38-3.33 (m, 2H), 3.04-2.99 (m, 2H), 1.24 (s, 9H); ¹³C NMR (100 MHz, DMSO-d₆) $\delta = 155.9$, 152.3, 150.3, 149.5, 138.0, 134.0, 128.0, 126.9, 126.5, 124.7, 117.9, 99.1, 42.6, 41.3, 35.3, 31.3; ; ESI-MS: m/z 418 [M+H]⁺. HRMS (ESI TOF (+)) calcd for [C₂₁H₂₄ClN₃O₂S + H⁺] 418.1351 found 418.1342.

N-(3-(7-chloroquinolin-4-ylamino)propyl)-2,4,6-triisopropylbenzenesulfonamide (16).

White solid; Yield 68%; Mp: 179-181°C; ¹H NMR (300 MHz, CDCl₃) δ =8.47 (d, 1H, *J* = 7.5 Hz), 7.93-7.92 (m, 1H), 7.81-7.78 (d, 1H, *J* = 8.9 Hz), 7.37 (dd, 1H, *J* = 1.9 Hz, *J* = 8.8 Hz), 7.18(s, 2H), 6.35 (d, 1H, *J* = 5.3 Hz), 5.88 (s, 1H), 4.18-4.09 (m, 2H), 3.58-3.56 (m, 2H), 3.14 (s, 2H), 2.95-2.86 (m,1H),1.96-1.93 (m, 2H), 1.27-1.25 (m,18H);¹³C NMR (100 MHz, CDCl₃) δ = 152.0, 151.5, 150.3, 149.7, 148.6, 133.7, 133.3, 127.1, 124.2, 124.1, 123.6, 117.4, 98.7, 40.1, 40.0, 33.3, 28.8, 28.1, 24.8, 23.5; ESI-MS: m/z 502 [M+H]⁺. HRMS (ESI TOF (+)) calcd for [C₂₇H₃₆ClN₃O₂S + H⁺] 502.2290 found 502.2311.

N-(2-(7-chloroquinolin-4-ylamino)ethyl)-2,4,6-triisopropylbenzenesulfonamide (17).

White solid; Yield 75%; Mp: 198-200°C; ¹H NMR (300 MHz, CDCl₃) δ = 8.39 (s, 1H), 7.95 (d, 1H, *J* = 8.6 Hz), 7.86 (s, 1H), 7.40 (d, 1H, *J* = 8.6 Hz), 7.20 (s,3H) 6.80 (brs, 1H), 6.31 (d, 1H, *J* = 4.7 Hz), 4.18-4.14 (m, 2H), 3.48 (s, 2H), 3.43(3H, d, *J* = 5.3 Hz), 1.30-1.27 (m, 18H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 152.6, 151.1, 151.0, 150.1, 148.0, 134.6, 133.4, 126.7, 125.0, 124.5, 124.0, 117.6, 98.8, 42.8, 40.2, 33.7, 29.3, 25.1, 23.8; ESI-MS: m/z 488 [M+H]⁺. HRMS (ESI TOF (+)) calcd for [C₂₆H₃₄ClN₃O₂S + H⁺] 488.2133 found 488.2122.

N-(3-(7-chloroquinolin-4-ylamino)propyl)biphenyl-4-sulfonamide (18).

White solid; Yield 67%; Mp: 150-152°C; ¹H NMR (400 MHz, DMSO-d₆) $\delta = 8.39$ (d, 1H, J = 5.2 Hz), 8.29 (d, 1H, J = 9.0 Hz), 7.86-7.81 (m, 4H), 7.80-7.79 (m, 1H), 7.77-7.74 (m, 1H), 7.69-7.67 (m, 2H), 7.53-7.50 (m, 2H), 7.49-7.48 (m, 1H), 7.46-7.41 (m, 1H), 6.52 (d, 1H, J = 5.8 Hz), 3.26-3.33 (m, 2H), 2.96-2.91(m, 2H), 1.82-1.79 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 150.6$, 149.3, 146.1, 143.3, 138.6, 137.9, 133.8, 128.5, 127.9, 126.8, 126.6, 126.4, 125.0, 124.1, 123.9, 116.4, 98.1, 39.9, 39.8, 27.2; ESI-MS: m/z 452 [M+H]⁺. HRMS (ESI TOF (+)) calcd for [C₂₄H₂₂ClN₃O₂S + H⁺] 452.1194 found 452.1217.

N-(2-(7-chloroquinolin-4-ylamino)ethyl)biphenyl-4-sulfonamide (19).

White solid; Yield 70%; Mp: 151-153°C; ¹H NMR (300 MHz, DMSO-d₆) δ = 8.36 (d, 1H, *J* = 5.1 Hz), 8.16 (d, 1H, *J* = 9.0 Hz), 7.88 (d, 2H, *J* = 8.25 Hz), 7.78 (s, 1H), 7.75 (d, 1H, *J* = 5.9 Hz), 7.66 (d, 1H, *J* = 7.1 Hz), 7.51-7.41 (m, 6H), 6.42 (d, 1H, *J* = 5.3 Hz), 3.41-3.32 (m, 2H), 3.11-3.09 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 152.0, 150.4, 149.0, 140.7, 134.1, 132.9, 129.6, 127.5, 126.8, 124.7, 124.3, 117.7, 99.0, 42.5, 42.1 ESI-MS: m/z 438 [M+H]⁺. HRMS (ESI TOF (+)) calcd for [C₂₃H₂₀ClN₃O₂S + H⁺] 438.1038 found 438.1027.