Electronic Supplementary Information

Synthesis of Activated carbon/polyaniline nanocomposites for enhanced CO₂ Adsorption

S. Khalili^a, B. Khoshandam^a,*, M. Jahanshahi^b

^a Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran.

^bNanotechnology Institute, Chemical Engineering Department, Babol University of Technology, Babol, Iran.

Email: bkhoshandam@semnan.ac.ir

Ph: +98 2313354100; Fax: +98 2313354120

	Adsorbant	Temperature	Langmuir				Freundlich			Sips			
F	Adsorbent	(K)	$q_m(mmol/g)$	b	R ²	_	Κ	n	\mathbb{R}^2	q _m (mmol/g)	b	n	R ²
CO ₂	AC	298	9.464	0.258	0.999		2.325	2.260	0.978	9.751	0.247	1.039	1.000
		308	8.641	0.196	0.999		1.826	2.106	0.982	9.105	0.184	1.033	1.000
		318	8.218	0.157	0.998		1.444	1.922	0.984	8.508	0.148	1.006	0.999
		298	14.520	0.178	0.993		2.957	2.089	0.998	28.473	0.1070	1.565	0.999
	AC-PANI-F	308	14.418	0.128	0.997		2.250	1.859	0.998	22.356	0.0976	1.330	1.000
		318	14.216	0.100	0.997		1.692	1.661	0.996	19.121	0.0826	1.185	0.999
		298	19.758	0.152	0.996		3.478	1.932	0.996	30.256	0.114	1.345	0.999
	AC-PANI-S	308	19.672	0.102	0.994		2.557	1.747	0.997	26.424	0.087	1.203	0.999
		318	18.980	0.075	0.993		1.849	1.600	0.997	23.968	0.066	1.135	1.000

Table S1 Parameters of Langmuir, Freundlich and Sips isotherm models.

Table S2 Sips parameters to represent pure nitrogen isotherm data at 298 K for AC and nanocomposites.

Adsorbent	n	b	q _m (mmol/g)	R ²	
AC	1.752	0.159	6.130	0.999	
AC-PANI-F	1.465	0.111	4.686	0.999	
AC-PANI-S	1.800	0.143	5.599	1.000	

Adsorbent	Amine	Adsorption Capacity(mmol.g ⁻¹)	Pressure(bar)	Temperature(K)	Refs.
β-zeolite	MEA	0.77	1	303	66
MWCNT	PEI	2.14	1	298	67
MWCNT	AEAPTS	2.59	0.5	293	68
MWCNT	mPDA	2.94	1	298	57
Zeolite 13X	MEA	1.11	1	348	69
Zeolite	AMP	0.62	1	298	70
Zeolite 13X	IPA	0.52	1	298	71
Silica (MCM-41)	APTES	1.63	1	298	72
Silica (SBA-15)	PEI	1.72	1	298	73
Silica (SBA-15)	TEPA	2.22	1	298	73
Silica (PE-MCM-41)	DAEAPTS	2.62	0.05	298	74
MOF	PEI	4.2	0.15	298	75
Activated carbon	AMP	1.5	1	298	76
Activated carbon	MEA	1.02	1	298	69
Activated carbon	TEA	0.32	1	298	69
Activated carbon	PEI	2.28	1	298	77
Graphene	PANI nanosphere	2.20	1	298	78
Activated carbon	PANI nanofiber	2.69	1	298	This study
Activated carbon	PANI nanosphere	3.16	1	298	This study

Table S3 Comparison of CO_2 adsorption capacity with other adsorbents.

Fig. S1 TGA curves of AC before and after functionalization with PANI.

Fig.S2 Experimental CO₂ adsorption data of adsorbents at different temperatures along Sips model isotherm.

Fig. S3 Pure gas isotherms of N_2 on AC and nanocomosites at 298 K along with Sips model isotherm.

Fig. S4 Ideal selectivity for CO_2/N_2 system on AC (a), AC-PANI-F (b) and AC-PANI-S (c) at 298 K and different pressures.