A solution to achieve good reusability of MNPs Fe₃O₄-supported (S)-Diphenylprolinoltrimethylsilyl ether catalysts in asymmetric Michael reaction

Tao Wu,^a Dandan Feng,^a Bing Xie^{*b} and Xuebing Ma^{*a}

Table of contents

1.	Elemental analysis2
2.	TGA2
3.	N ₂ adsorption-desorption isotherm3
4.	¹ H and ¹³ C NMR spectra of intermediates and
	Jørgensen-Hayashi catalyst 55
5.	Characterization of asymmetric Michael reaction products9
6.	Reusability of Fe ₃ O ₄ /PVP@SiO ₂ /ProTMS24
7.	TEM image of 10 th -recycled Fe ₃ O ₄ /PVP@ SiO ₂ /ProTMS26

1. Elemental analysis

Entry	Catalyst	C (%)	H (%)	N (%)	S (%)	Loaded ProTMS (%, mmol/g)	Loaded MPTMS (%, mmol/g)
1	Fe ₃ O ₄ /PVP	0.01	0.23	0.05	1	/	1
2	Fe ₃ O ₄ @SiO ₂ /ProTMS	31.51	4.10	1.02	6.15	37.81, 0.73	8.9, 1.18
3	Fe ₃ O ₄ /PVP@SiO ₂ /ProTMS	31.56	3.22	0.9	5.42	33.15, 0.64	8.0, 1.06
4	Fe ₃ O ₄ /PVP@SiO ₂ /ProTMS ^a	34.27	3.93	1.76	5.62	/	1

Table s1. The elemental analysis of supported Jørgensen-Hayashi catalysts

^a 10th-recycled Fe₃O₄/PVP@ SiO₂/ProTMS

The calculation of loaded MPTMS, ProTMS and Jørgensen-Hayashi catalyst 5:

In Fe₃O₄@SiO₂/ProTMS and Fe₃O₄/PVP@SiO₂/ProTMS catalysts, only Jørgensen–Hayashi catalyst **5** contained nitrogen element, the loading capacities of Jørgensen–Hayashi catalyst **5** was equal to that of ProTMS, and could be calculated according to elemental analysis (1.02% and 0.90%) as followed.

In Fe₃O₄@SiO₂/ProTMS: 1.02 ÷(14×100) ×1000=0.73 (mmol g⁻¹)

In Fe₃O₄/PVP@SiO₂/ProTMS: 0.9÷(14×100) ×1000=0.64 (mmol g⁻¹)

Furthermore, Jørgensen–Hayashi catalyst **5** was immobilized by the radical addition of sulfydryl (-SH) to C=C double bond to obtain ProTMS. It is confirmed that nitrogen in ProTMS has the same content as sulphur, and the total contents of sulphur (6.15% and 5.42%) are the sum of sulfide (-S-) and thiol (-SH).

Then, the total contents of sulphur:

In Fe₃O₄@SiO₂/ProTMS: 6.15 \div (32×100) ×1000=1.92 (mmol g⁻¹)

In Fe₃O₄/PVP@SiO₂/ProTMS: 5.42 ÷(32×100) ×1000=1.69 (mmol g⁻¹)

The contents of free MPTMS unreacted with Jørgensen-Hayashi catalyst 5:

In Fe₃O₄@SiO₂/ProTMS: 1.92-0.73=1.19 (mmol g⁻¹)

In Fe₃O₄/PVP@SiO₂/ProTMS:1.69-0.64=1.05 (mmol g⁻¹)

The molar ratios of free MPTMS to ProTMS:

In Fe₃O₄@SiO₂/ProTMS:1.19/0.73=1.63

In Fe₃O₄/PVP@SiO₂/ProTMS:1.05/0.64=1.64

2. TGA

Fig. s3. TGA of 10th-recycled Fe₃O₄/PVP@SiO₂/ProTMS

3. N_2 adsorption-desorption isotherm

Fig. s4. N₂ adsorption-desorption isotherm and pore distribution of Fe₃O₄

Fig. s5. N_2 adsorption-desorption isotherm and pore distribution of Fe_3O_4/PVP

Fig. s6. N2 adsorption-desorption isotherm and pore distribution of Fe₃O₄@SiO₂/ProTMS

Fig. s7. N₂ adsorption-desorption isotherm and pore distribution of Fe₃O₄/PVP@SiO₂/ProTMS

Fig. s8. N2 adsorption-desorption isotherm and pore distribution of 10th-recycled Fe3O4/PVP@SiO2/ProTMS

Entry	Catalvat	Surface Area	Average Pore	Pore Volume
Enuy	Calaryst	[m²/g] ^b	Diameter [Å] ^c	[10 ⁻³ cc/g] ^d
1	Fe ₃ O ₄	7.91	51.9	20.53
2	Fe ₃ O ₄ /PVP	65.88	117.2	385.9
3	Fe ₃ O ₄ @SiO ₂ /ProTMS	3.34	75.69	12.65
4	Fe ₃ O ₄ /PVP@SiO ₂ /ProTMS	3.92	157.1	30.77
5	Fe ₃ O ₄ /PVP@SiO ₂ /ProTMS ^e	16.86	25.00	21.07

Table s2. The mesoporous properties of as-synthesized sample ^a

^a The sample was degassed at 100 °C for 5 h.

^b Based on multipoint BET method.

° Based on the desorption data using BJH method. ^d Based on the desorption data of BJH method.

e10th-recycled Fe₃O₄/PVP@SiO₂/ProTMS

4. ¹H and ¹³C NMR spectra of intermediates and Jørgensen-Hayashi catalyst 5

S7

5. Characterization of asymmetric Michael reaction products

Racemic Michael adducts were prepared using pyrolidine as catalyst according to the same procedure. Nitroalkenes derivatives were synthesized according to the reported literature. ^[1-3]

- [1] Gao S. H., et. al., Org. Lett., 2006, 8, 2373-2376.
- [2] Trost B. M., et. al., J. Am. Chem. Soc., 2008, 130, 2438-2439.
- [3] Lopchuk J. M., et. al., Org. Lett., 2013, 15, 5218-5221.

(2R, 3S)-2-methyl-4-nitro-3-phenylbutanal: 96:4 dr, 98.2% ee, HPLC on Daicel Chiralpak OD-H column:

heptane/*i*-PrOH = 8/2, flow rate 1.0 mL min⁻¹, λ = 210 nm: t_R = 26.8 min (minor), t_R = 37.5 min (major); ¹H NMR (600 MHz, CDCl₃, TMS, major diastereomer): δ 1.00 (d, *J* = 7.3 Hz, 3H, *CH*₃), 2.74–2.84 (m, 1H, *CH*CH₃), 3.79–3.85 (m, 1H, *CH*CH₂), 4.77–4.81 (m, 2H, *CH*₂), 7.16–7.21 (m, 2H, Ar-*H*), 7.27–7.30 (m, 1H, Ar-*H*), 7.32–7.35 (m, 2H, Ar-*H*), 9.71 (d, *J* = 1.5 Hz, 1H, *CH*O); ¹³C NMR (150 MHz, CDCl₃, major diastereomer): δ 12.3 (*C*H₃),

44.3 (CHCH₂), 48.6 (CHCH₃), 78.3 (CH₂), 128.2, 128.3, 129.2, 129.3, 136.8 (Ph), 202.3 (C=O).

S10

(2R, 3S)-3-(4-fluorophenyl)-2-methyl-4-nitrobutanal: 89:11 dr, 98.2% ee, HPLC on Daicel Chiralpak AD-H

column: heptane/*i*-PrOH = 19/1, flow rate 1.0 mL min⁻¹, λ = 210 nm: t_R = 26.4 min (major), t_R = 34.7 min (minor); ¹H NMR (600 MHz, CDCl₃, TMS, major diastereomer): δ 0.99– 1.01 (m, 3H, CH₃), 2.72–2.83 (m, 1H, CHCH₃), 3.79–3.82 (m, 1H, CHCH₂), 4.72–4.80 (m, 2H, CH₂), 7.01–7.05 (m, 2H, Ar-*H*), 7.14–7.27 (m, 2H, Ar-*H*), 9.69 (s, 1H, CHO); ¹³C NMR (150 MHz, CDCl₃, major diastereomer): δ 12.3 (CH₃), 43.6 (CHCH₂), 48.6 (CHCH₃), 78.3 (CH₂), 116.2, 116.3, 129.9, 130.0, 132.6 (Ph), 202.1 (C=O).

(2R, 3S)-3-(4-chlorophenyl)-2-methyl-4-nitrobutanal: 87:13 dr, 97.0% ee, HPLC on Daicel Chiralpak AD-H

column: heptane/*i*-PrOH = 19/1, flow rate 1.0 mL min⁻¹, λ = 210 nm: t_R = 27.1 min (major), t_R = 36.2 min (minor); ¹H NMR (600 MHz, CDCl₃, TMS, major diastereomer): δ 1.00 (d, *J* = 7.3 Hz, 3H, CH₃), 2.73–2.83 (m, 1H, CHCH₃), 3.78–3.83 (m, 1H, CHCH₂), 4.73–4.81 (m, 2H, CH₂), 7.11–7.17 (m, 2H, Ar-*H*), 7.31–7.33 (m, 2H, Ar-*H*), 9.69 (d, *J* = 1.4 Hz, 1H, CHO); ¹³C NMR (150 MHz, CDCl₃, major diastereomer): δ 12.3 (CH₃), 43.7 (CHCH₂), 48.4 (CHCH₃), 78.1 (CH₂), 129.5, 129.6, 129.7, 134.3, 135.4 (Ph), 201.9 (C=O).

48.4 (CHCH₃), 78.0 (CH₂), 122.3, 129.9, 130.0, 132.4, 135.9 (Ph), 201.9 (C=O).

(2R,3S)-3-(4-methoxyphenyl)-2-methyl-4-nitrobutanal: 92:8 dr, 96.7% ee, HPLC on Daicel Chiralpak OD-H

column: heptane/*i*-PrOH = 8/2, flow rate 1.0 mL min⁻¹, λ = 220 nm: t_R = 29.5 min (minor), t_R = 30.5 min (major); ¹H NMR (600 MHz, CDCl₃, TMS, major diastereomer): δ 0.98 (d, *J* = 7.2 Hz, 3H, CHCH₃), 2.70–2.79 (m, 1H, CHCH₃), 3.73–3.76 (m, 1H, CHCH₂), 3.78(s, 3H, OCH₃), 4.70–4.78 (m, 2H, CH₂), 6.85-6.87 (m, 2H, Ar-*H*), 7.07–7.13 (m, 2H, Ar-*H*), 9.69 (d, *J* = 1.6 Hz, 1H, CHO); ¹³C NMR (150 MHz, CDCl₃, major diastereomer): δ 12.2

(CHCH₃), 43.6 (CHCH₂), 48.8 (CHCH₃), 55.4 (OCH₃), 78.5 (CH₂), 114.6, 114.7, 128.6, 129.3, 159.5 (Ph), 202.5 (C=O).

(2R,3S)-3-(3-methoxyphenyl)-2-methyl-4-nitrobutanal: 89:11 dr, 95.8% ee, HPLC on Daicel Chiralpak OJ-H

OCH₃ OCH₃ OCH₃ $t_R = 58.3 \text{ min (major)}; ^1H \text{ NMR (600 MHz, CDCl₃, TMS, major diastereomer)}: \delta 1.00 (d, J = 7.3 Hz, 3H, CHCH₃), 2.72–2.82 (m, 1H, CHCH₃), 3.75–3.81 (m, 4H, CHCH₂, OCH₃), 4.73–4.79 (m, 2H, CH₂), 7.70–7.83 (m, 3H, Ar-H), 7.23–7.27 (m, 1H, Ar-H), 9.69 (d, J = 1.6 Hz, 1H, CHO); ¹³C NMR (150 MHz, CDCl₃, major diastereomer): <math>\delta$ 12.3 (CHCH₃),

(2R,3S)-2-methyl-4-nitro-3-m-tolylbutanal: 89:11 dr, 96.4% ee, HPLC on Daicel Chiralpak OD-H column: heptane/i-PrOH = 8/2, flow rate 1.0 mL min⁻¹, λ = 210 nm: t_R = 19.5 min (minor), t_R = 21.5 min (major); ¹H NMR

(Ar-CH₃), 44.3 (CHCH₂), 48.7 (CHCH₃), 78.3 (CH₂), 125.1, 125.2, 129.0, 129.1, 136.7, 138.9 (Ph), 202.5 (C=O).

(2R,3S)-3-(2-chlorophenyl)-2-methyl-4-nitrobutanal: 88:12 dr, 96.1% ee, HPLC on Daicel Chiralpak AD-H

column: heptane/i-PrOH 19/1, flow rate 1.0 mL min⁻¹, $\lambda = 210$ nm: t_R = 20.4 min (major), t_R = 23.9 min (minor); ¹H NMR (600 MHz, CDCl₃, TMS, major diastereomer): δ 1.03 (d, J = 7.4 Hz, 3H, CH₃), 2.94–3.02 (m, 1H, CHCH₃), 4.32–4.52 (m, 1H, CHCH₂), 4.75–4.88 (m, 2H, CH₂), 7.20–7.43 (m, 4H, Ar-H), 9.73 (d, J = 1.4 Hz, 1H, CHO); ¹³C NMR (150 MHz, CDCl₃, major diastereomer): δ 12.4 (CH₃), 40.1 (CHCH₂), 48.0 (CHCH₃), 76.9

(CH₂), 127.6, 128.5, 129.4, 130.7, 134.3, 134.8 (Ph), 202.0 (C=O).

(2R, 3S)-3-(2-methoxyphenyl)-2-methyl-4-nitrobutanal: 92:8 dr, 95.7% ee, HPLC on Daicel Chiralpak AS-H column: heptane/i-PrOH = 98/2, flow rate 0.9 mL min⁻¹, λ = 220 nm: t_R = 72.6 min (minor), t_R = 75.3 min (major); ¹H NMR (600 MHz, CDCl₃, TMS, major diastereomer): δ 0.93 (d, J = 7.3 Hz, 3H, CHCH₃), 2.92–3.01 (m, 1H, CHCH₃), 3.83(s, 3H, OCH₃), 4.02–4.07 (m, 1H, CHCH₂), 4.72–4.88 (m, 2H, CH₂), 6.88–6.92 (m, 2H, Ar-H), 7.06–7.12 (m, 1H, Ar-H), 7.25–7.28 (m, 1H, Ar-H), 9.70 (d, J = 1.8 Hz, 1H, CHO); ¹³C NMR (150 MHz, CDCl₃,

major diastereomer): δ 12.2 (CHCH₃), 40.7 (CHCH₂), 47.3 (CHCH₃), 55.5 (OCH₃), 77.1 (CH₂), 111.3, 121.1, 124.7, 129.4, 130.4, 157.5 (Ph), 202.9 (C=O).

(2R, 3S)-2-methyl-4-nitro-3-o-tolylbutanal: 90:10 dr, 96.6% ee, HPLC on Daicel Chiralpak OD-H column:

heptane/*i*-PrOH = 8/2, flow rate 1.0 mL min⁻¹, λ = 210 nm: t_R = 21.5 min (minor), t_R = 25.2 min (major); ¹H NMR (600 MHz, CDCl₃, TMS, major diastereomer): δ 0.96 (d, *J* = 7.3 Hz, 3H, CHCH₃), 2.39 (s, 3H, ArCH₃), 2.73–2.82 (m, 1H, CHCH₃), 4.09–4.13 (m, 1H, CHCH₂NO₂), 4.63–4.81 (m, 2H, CH₂NO₂), 7.09–7.22 (m, 4H, ArH), 9.72 (d, *J* = 1.9 Hz, 1H,

CHO); ¹³C NMR (150 MHz, CDCl₃, major diastereomer): δ 12.4 (CH*C*H₃), 19.9 (Ar-*C*H₃), 38.9 (*C*HCH₂), 49.4 (CHCH₃), 78.3 (*C*H₂), 126.1, 126.9, 127.8, 131.3, 133.6, 137.2 (Ph), 202.6 (*C*=O).

(2R, 3R)-3-(furan-2-yl)-2-methyl-4-nitrobutanal: 81:19 dr, 96.4% ee, HPLC on Daicel Chiralpak AS-H column:

heptane/i-PrOH = 9/1, flow rate 0.8 mL min⁻¹, λ = 214 nm: t_R = 38.2 min (minor), t_R = 41.5 min (major); ¹H NMR (600 MHz, TMS, CDCl₃, major diastereomer): δ 1.07 (d, *J* = 7.3 Hz,
NO₂ 3H, CH₃), 2.78–2.84 (m, 1H, CHCH₃), 4.07–4.11 (m, 1H, CHCH₂), 4.68–4.77 (m, 2H,
CH₂), 6.13–6.21(m, 1H, =CH), 6.29–6.32(m, 1H, =CH), 7.34–7.36 (m, 1H, =CH), 9.70 (d,

J = 0.8 Hz, 1H, CHO); ¹³C NMR (150 MHz, CDCl₃, major diastereomer): δ 11.1 (CH₃), 37.9 (CHCH₂), 47.3 (CHCH₃), 76.0 (CH₂), 108.9, 110.6, 142.8, 150.2 (=CH), 201.7 (C=O).

(2R, 3R)-3-n-butyl-2-methyl-4-nitrobutanal: 84:16 dr, 97.2% ee, HPLC on Daicel Chiralpak AS-H column:

 $CH_2CH_2CH_2$), 2.54–2.77 (m, 2H, $CHCH_3$, $CHCH_2NO_2$), 4.29–4.51 (m, 2H, CH_2NO_2), 9.69 (d, J = 7.7Hz, 1H, CHO); ¹³C NMR (150 MHz, $CDCl_3$, major diastereomer): δ 9.9 (CH_3), 14.0 (CH_2CH_3), 22.7, 28.3, 29.3 ($CH_2CH_2CH_2$), 37.7 ($CHCH_2NO_2$), 47.1 ($CHCH_3$), 77.3 (CH_2NO_2), 203.0 (C=O).

6. Reusability of Fe₃O₄/PVP@ SiO₂/ProTMS

Table s3. Recycling experiments of Fe₃O₄/PVP@SiO₂/ProTMS in Michael addition reaction ^a

_					
	1	8	>99	98	96/4
	2	12	>99	98	96/4
	3	18	96	98	96/4
	4	18	95	98	96/4
	5	24	93	98	96/4
	6	24	89	98	96/4
	7	24	88	98	96/4
	8	48	86	98	96/4
	9	48	81	97	964
	10	48	77	98	96/4

^a Reaction conditions: *trans-β*-Nitrostyrene (40 mg, 0.27 mmol), propionaldehyde (94 mg, 1.62 mmol), Fe₃O₄/PVP@ProTMS (30 mg, 7 mol %), 3-NO₂PhCO₂H (10 mol %), CHCl₃ (2.0 mL), 0 °C.

^b Isolated yield.

^c Determined by ¹H NMR.

^d Determined by chrial HPLC of crude.

Table s4. Recycling experiments of Fe₃O₄@SiO₂/ProTMS in Michael addition reaction ^a

$NO_{2} + CH_{3}CH_{2}CHO \xrightarrow{Fe_{3}O_{4}@SiO_{2}/ProTMS}_{3-NO_{2}PhCO_{2}H, CHCl_{3}} H NO_{2}$					
Run	T (h)	Yield (%) ^b	%ee (<i>Syn</i>) °	syn/anti ^d	
1	15	93	98	93/7	
2	24	89	98	92/8	
3	35	85	98	91/9	
4	48	81	98	90/10	
5	48	70	98	90/10	
6	48	56	98	89/11	

^a Reaction conditions: *trans-β*-Nitrostyrene (40 mg, 0.27 mmol), propionaldehyde (94 mg, 1.62 mmol), Fe_3O_4 @ProTMS (26 mg, 7 mol %), 3-NO₂PhCO₂H (10 mol %), CHCl₃ (2.0 mL), 0 ⁻C.

^b Isolated yield.

^c Determined by ¹H NMR.

^d Determined by chrial HPLC of crude.

7. TEM image of Fe₃O₄/PVP@SiO₂/ProTMS and 10th-recycled Fe₃O₄/PVP@SiO₂/ProTMS

Fig. s9. TEM image of fresh Fe₃O₄/PVP@SiO₂/ProTMS

Fig. s10. TEM image of 10th-recycled Fe₃O₄/PVP@SiO₂/ProTMS