Electronic Supplementary Information

Protein Separations *via* Thermally Responsive Ionic Block Copolymer Brush Layers

Kenichi Nagase*,^a Jun Kobayashi,^a Akihiko Kikuchi,^b Yoshikatsu Akiyama,^a

Hideko Kanazawa,^c and Teruo Okano*,^a

^a Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns,

8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan

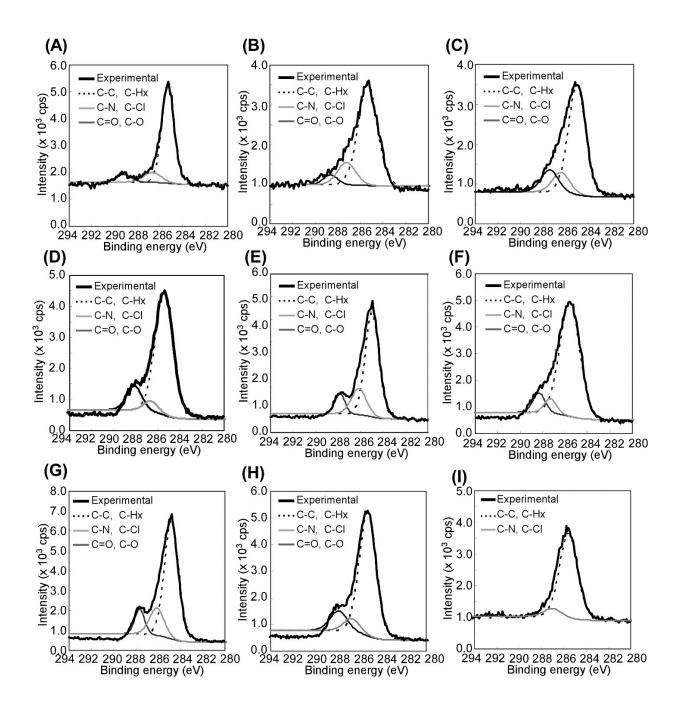
^b Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan

^c Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan

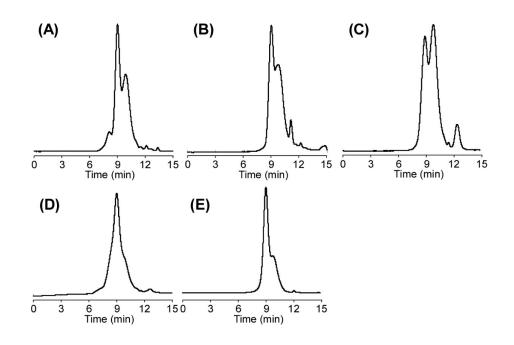
*Corresponding author

E-mail: nagase.kenichi@twmu.ac.jp, tokano@twmu.ac.jp

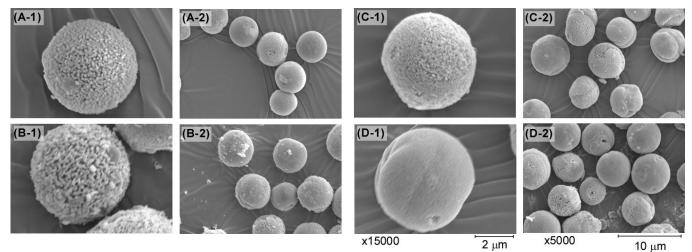
Compounds	Structure	Molecular weight	LogP ^a	p <i>K</i>
Adenosine monophosphate (AMP)		347.06		3.3, 6.1
Adenosine diphosphate (ADP)	HO - P - O - P - O - O - O - O + O + O + O + O + O + O	427.20		3.95, 6.3
Adenosine triphosphate (ATP)		507.18		4.00, 6.5
Hydrocortisone		362.46	1.61	
Dexamethasone		392.46	1.83	

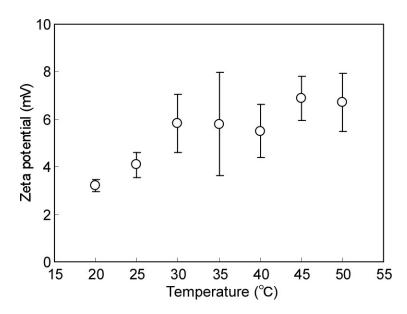

Table S1 Properties of adenosine nucleotides and hydrophobic steroids

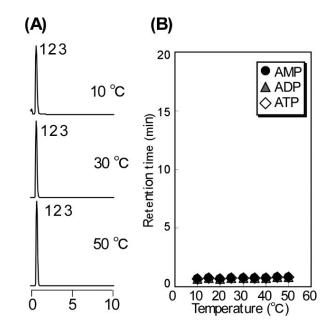
a) Partition coefficient in an n-octanol/water system.^{S35}

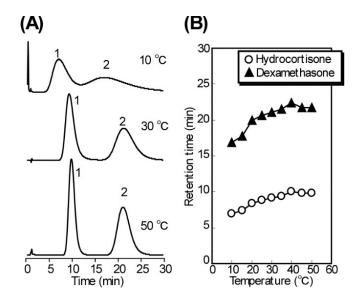

Table S2 Properties of proteins in milk serum

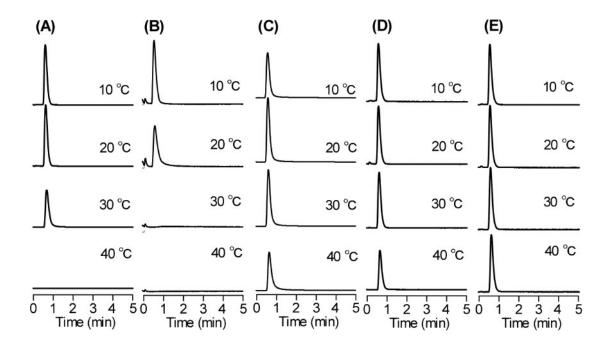
Analyte	Molecular weight a)	pI ^{a)}	Remarks
α -Lactalbumin	14.2 kDa	4.5	Major protein in milk serum, Related to production lactose
β-Lactoglobulin	~18.4 kDa	5.1	Major whey protein, Allergic property
Lactoferrine	83.1 kDa	8.2-8.9	Transferrin family, Antimicrobial activity
Bovine serum albumin (BSA)	66.4 kDa	4.7	Regulation of colloidal pressure of blood
γ-globulin	155 kDa	6.85	Main protein for immunoreaction

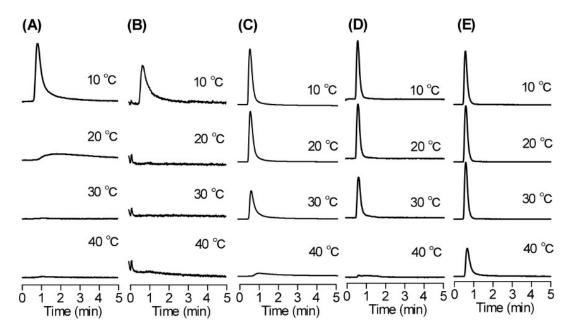

a) From manufacturer's data.

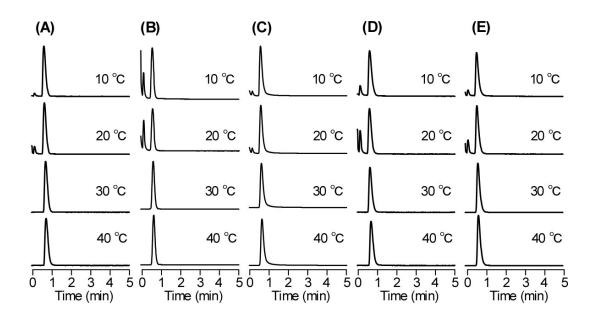

Figure S1 Peak de-convolution of C1s peaks in X-ray photoelectron spectra of prepared beads (A) 10A, (B) 15A, (C) 20C, (D) 10A-1000IP, (E) 15A-1000IP, (F) 20A-1000IP, (G) 1000IP-*r*-15A, (H) 1000IP, and (I) ATRP-initiator modified silica beads (see Table 3). For copolymer-grafted silica bead surfaces, an additional peak was observed at 288 eV that corresponds to C=O and C-O bonds of the copolymer. There were no peaks in the spectrum of the ATRP-initiator-modified silica surfaces.


Figure S2 Gel permeation chromatograms of PAPTAC-*b*-PIPAAm retrieved from silica bead surfaces to determine molecular weights: (A) 10A-1000IP, (B) 15A-1000IP, (C) 20A-1000IP, (D) 1000IP-*r*-15A, and (E) 1000IP (see Table 3).


Figure S3 (A-1, A-2) Scanning electron microscopy (SEM) images of non-modified silica beads; (B-1, B-2) SEM images of initiator-modified silica beads; (C-1, C-2) SEM images of PAPTAC brush-modified beads (15A in Table 1); (D-1, D-2) SEM images of PAPTAC-*b*-PIPAAm brush-grafted silica beads (15A-1000IP in Table 1). Background patterns in the images are double-sided tape that was used to affix the samples to stages. Images numbered (A-1), (B-1), (C-1), and (D-1) are high-resolution (×15 000 magnification).


Figure S4 Zeta potential of the PAPTAC-*b*-PIPAAm brush-grafted silica beads (15A-1000IP in Table 1) at various temperatures in a 5 mM KCl aqueous solution.


Figure S5 Elution of adenosine nucleotides from a PI1000 column at various temperatures (A), and temperaturedependent retention times of adenosine nucleotides on PI1000 (B). Mobile phase is 66.7 mmol/L PB (pH 7.0). Peak 1 represents AMP; 2, ADP; 3, ATP.


Figure S6 Elution of steroids from a PI1000 column at various temperatures (A), and temperature-dependent retention times for steroids on PI1000 (B). Mobile phase is 66.7 mmol/L PB (pH 7.0). Peak 1 represents hydrocortisone; 2, dexamethasone.

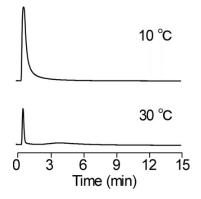

Figure S7 Temperature-dependent elution of milk serum proteins from a 10A-1000IP column; (A) α -lactalbumin, (B) β -lactoglobulin, (C) lactoferrin, (D) bovine serum albumin, and (E) γ -globulin. Mobile phase is 66.7 mmol/L PB (pH 7.0).

Figure S8 Temperature-dependent elution of milk serum proteins from a 20A-1000IP column; (A) α -lactalbumin, (B) β -lactoglobulin, (C) lactoferrin, (D) bovine serum albumin, and (E) γ -globulin. Mobile phase is 66.7 mmol/L PB (pH 7.0).

Figure S9 Temperature-dependent elution of milk serum proteins from a 1000IP column; (A) α -lactalbumin, (B) β -lactoglobulin, (C) lactoferrin, (D) bovine serum albumin, and (E) γ -globulin. Mobile phase is 66.7 mmol/L PB (pH 7.0).

Figure S10 Temperature-dependent elution of a mixture of milk serum proteins from 15A-1000IP column. Mobile phase is 66.7 mmol/L PB (pH 7.0).

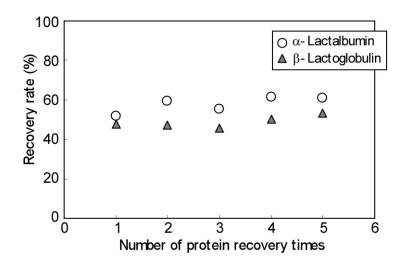


Figure S11 Recovery rates for proteins with multiple thermally-modulated protein adsorption and desorption steps.

Reference (S1) Hansch, C.; Albert, L.; Hoekman, D., *In Exploring QSAR: Hydrophobic, Electronic and Steric Constant* American Chemical Society: Washinton DC, **1995**; p.174, 178.