Supporting Information

The strategy of two-scale interfaces enrichment for constructing ultrasensitive SERS substrates based on coffee ring effect of AgNP@β-CD

Xiaoyu Pan, Jian Dong, Yan Li, Xiang Sun, Chunwei Yuan*and Weiping Qian*

State Key Laboratory of Bioelectronics, School of Biological Science and Medical

Engineering, Southeast University, Nanjing 210096, China

*Corresponding authors: E-mail: wqian@seu.edu.cn; cwy@seu.edu.cn

Fig S1: The micro images under microRaman modem, the SERS spectra was randomly acquired along the ring edge (region in between two red curves)

Fig S2: The SEM image of AgNP@ β -CD deposited on hydrophilic silicon wafer.

Fig S3: SERS intensity of randomly point on the five substrate respectively. The average SERS intensity (AVG) and relative standard deviation (RSD) of 20 points for each substrate

Fig S4: The SERS spectrum of the AgNP $@\beta$ -CD substrate.

Fig S5: The SERS spectrum of Nonylphenol (NP) and Bisphenol A (BPA)