Electronic Supporting Material

Development of carbon-supported Sn-SnO₂ photocatalyst by a hybridized solgel/dextran approach

Fernando Hung-Low, Donald A. Ramirez, Geneva R. Peterson, Walid Hikal and Louisa J. Hope-Weeks

ESI Fig. S1: SEM images of pure SnO₂, Sample 1.

ESI Fig. S2: Time-dependant absorbance spectra of Sample 6 with RhB.

ESI Table 1: Elemental analysis carbon content of annealed samples.

Precursor	Sample	Annealing Condition	Carbon (%)
SnPO	1	500°C / 3h / Air	.09
SnGLY	6	500°C / 3h / N ₂	74.63
SnGLY	7	500°C / 8h / N ₂	52.97
SnGLYw/o dextran	8	500°C / 3h / N ₂	21.50

ESI Fig. S3: SEM Images of A: rods and spheres; B: carbon-support; C: pure SnO₂.

ESI Table 2: Energy dispersive spectroscopy table of elemental distribution taken from sample locations of figure S3. Rods and spheres from image A, support from image B, and last pure SnO₂ from image C.

	Tin	Oxygen	Carbon
Rod ^a	82%	6%	10%
Spheres ^a	90%	2%	7%
Support	17%	5%	78%
Pure SnO ₂ ^a	79%	17%	<1%

^aResidual percentage aluminium was detected from the aluminium mounting stub.

ESI Fig. S4: SEM Images of sample 6 taken from various locations indicating a range of particulate sizes and shapes. Samples B,D, and F on the right are increased magnification of the samples on the left A,C, and E, respectively.