Supporting information

Flexible Hybrid Carbon Nanotube Sponges Embedded with SnS₂ from Tubular Nanosheaths to Nanosheets as Free-Standing Anodes for Lithium-Ion Battery

Zhimin Ma,^a Yunsong Wang,^a Yanbing Yang,^{ab} Muhammad Yousaf,^a Mingchu Zou,^a Anyuan Cao*^a and Ray P.S. Han*^a

^a Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871,
China. E-mail: ray-han@pku.edu.cn, anyuan@pku.edu.cn
^b Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China.
Fig. S1
Fig. S2
Fig. S3
8
Fig. 84
Fig. 85
Fig. S6
Fig S7
1 g. 57
Fig. S8
1 .
Fig. SQ
rig. 57
Fig. \$10
Fig. 510
E:- \$11
Fig. 511

Fig. S1 XRD pattern of the CNT Sponge.

Fig. S2 Raman pattern of the CNT@SnS $_2$ sponge and pure SnS $_2$.

Fig. S3 High-resolution XPS spectra of the CNT@SnS₂ sponge: (a) Sn 3d; (b) S 2p; (c) C 1s.

Fig. S4 Cyclic voltammograms of bare SnS₂ (a) and CNT sponge (b) electrodes.

Fig. S5 Coulombic efficiencies of various SnS₂ electrodes.

Fig. S6 SEM images of bare SnS_2 (a) and purchased SnS_2 (b) powder. It can be seen that bare SnS_2 prepared by our method agglomerated much greater than purchased SnS_2 dispersed as relatively uniform plate crystals.

S7 SEM images of CNT@SnS₂-88.37wt% (a) and CNT@SnS₂-45.82wt% (b) sponge electrodes under absolutely charged state.

Fig. S8 XRD pattern of the CNT@SnS₂-88.37wt% sponge after the electrode were taken to the absolutely charged state.

Fig. S9 (a) Rate capability and Coulombic efficiency of SnS₂-56.78wt% embedded in CNT sponge under shifty charge/discharge rates between 100 and 400 mAg⁻¹. (b) Nyquist plots of bare and purchased SnS₂ electrodes.

Fig. S10 Cycling performance of the sponges with various ratios of SnS₂ as free-standing electrodes

Fig. S11 Photo to show the area calculation of the electrode and the area is 0.46 cm².