RSC advances

ARTICLE

Supporting information

Effect of precursor on the catalytic properties of Ni₂P/SiO₂ in methyl palmitate hydrodeoxygenation

Ivan V. Shamanaev,^{abc} Irina V. Deliy,^{abc*} Pavel V. Aleksandrov,^{ac} Evgeny Yu. Gerasimov,^{abc} Vera P. Pakharukova^{abc}, Evgeny G. Kodenev,^a Artem B. Ayupov,^{ab} Andrey S. Andreev,^a Olga B. Lapina,^a and Galina A. Bukhtiyarova^a

^{a.} Boreskov Institute of Catalysis, pr. Lavrentieva 5, Novosibirsk, 630090, Russia.

^{b.}Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090, Russia.

^{c.} Research and Educational Center for Energy Efficient Catalysis, Novosibirsk National Research University, Pirogova st. 2, Novosibirsk, 630090, Russia. E-mail: delij@catalysis.ru

1. FID relative sensitivities

Relative sensitivities of methyl palmitate and HDO products are listed in Table S1.

Table S1 Relative sensitivities for hydrogen flame detector according to W. A. Dietz.¹

Compound	Composition	Relative Sensitivity
methyl palmitate	C ₁₅ H ₃₁ COOCH ₃	0.78
palmitic acid	C ₁₅ H ₃₁ COOH	0.65
palmityl palmitate	$C_{15}H_{31}COOC_{16}H_{33}$	0.30
Hexadecanal	C ₁₅ H ₃₁ CHO	0.78
hexadecan-1-ol	C ₁₆ H ₃₃ OH-1	0.85
hexadecan-2-ol	C ₁₆ H ₃₃ OH-2	0.85
pentadecene	C ₁₅ H ₃₀	1.03
hexadecene	$C_{16}H_{32}$	1.02
<i>n</i> -pentadecane	C ₁₅ H ₃₂	0.97
<i>n</i> -hexadecane	$C_{16}H_{34}$	0.98
methane	CH_4	0.97
methanol	CH₃OH	0.23

ARTICLE

2. Weisz-Prater calculations

Journal Name

Table S2 Physical	I properties of reagents for	Weisz-Prater calculations
-------------------	------------------------------	---------------------------

Designation	Description	Value	Reference
Т	System temperature	563 K	
p_{H_2}	Hydrogen pressure	3.0 MPa	
R _{particles}	Catalyst particles radius	0.5 mm	
r _{pore}	Catalyst pore radius	12.7 nm	
C _{S H2}	Surface concentration of hydrogen	2.24·10 ⁻⁴ mol/cm ³	2
C _{SMP}	Surface concentration of methyl palmitate	2.77·10 ⁻⁴ mol/cm ³	
A _{MP}	Observed HDO rate	2.74·10 ⁻⁶ mol/(s·cm ³)	
r_{H_2}	Radius of hydrogen molecule	0.120 nm	
r_{MP}	Radius of methyl palmitate molecule	0.395 nm	
λ_{MP}	r_{MP}/r_{pore}	0.0311	
λ_{H_2}	r_{H_2}/r_{pore}	0.0095	
P	Fitting parameter for silica	16.3	
X	n-Dodecane association parameter	1	
M _{Dodecane}	Molecular weight of n-dodecane	170.34 g/mol	
$\eta_{\scriptscriptstyle Dodecane}$	Viscosity of <i>n</i> -dodecane	0.25 mPa·s	
V _{H2}	Molar volume of hydrogen at normal boiling point	0.0286 m ³ /kmol	
V _{MP}	Molar volume of methyl palmitate at normal boiling point	0.4357 m ³ /kmol	calculated according to the method, described in ³
V _{Dodecane}	Molar volume of <i>n</i> -dodecane at normal boiling point	0.2872 m ³ /kmol	calculated according to the method, described in ³
L_{MP}^{vap}	Enthalpy of vaporization of methyl palmitate at normal boiling point	96.8 kJ/mole	4
$L_{Dodecane}^{vap}$	Enthalpy of vaporization of <i>n</i> - dodecane at normal boiling point	61.51 kJ/mol	5
$D_{H_2 Dodecane}$	Diffusion coefficient of hydrogen in <i>n</i> - dodecane	2.91·10 ⁻⁴ cm ² /s	
D _{MP Dodecane}	Diffusion coefficient of methyl palmitate in <i>n</i> -dodecane	7.37·10 ⁻⁵ cm ² /s	
$D_{eff H_2 Dodecane}$	Effective diffusion coefficient of hydrogen	2.47·10 ⁻⁴ cm ² /s	
D _{eff MP} Dodecane	Effective diffusion coefficient of methyl palmitate	4.59·10 ⁻⁵ cm²/s	
N _{W-PH2}	Weisz-Prater number for hydrogen	0.017	
N _{W - P MP}	Weisz-Prater number for methyl palmitate	0.076	

References

- 1 W. A. Dietz, J. Gas Chromatogr., 1967, 5, 68–71.
- 2 W. Gao, R. L. Robinson and K. A. M. Gasem, J. Chem. Eng. Data, 1999, 44, 130–132.
- 3 W. Schotte, *Chem. Eng. J.*, 1992, **48**, 167–172.
- J. S. Chickos, H. Zhao and G. Nichols, *Thermochim. Acta*, 2004, **424**, 111–121.
- 5 J. S. Chickos and J. A. Wilson, *J. Chem. Eng. Data*, 1997, **42**, 190–197.

3. H₂-TPR of passivated NiP_Ah sample

Fig. S1 H₂-TPR curves of calcined NiP_Ah precursor and NiP_Ah sample after reduction at 600 °C and subsequent passivation

4. C₁₆/C₁₅ molar ratio

5. Methyl palmitate and oxygen-containing compounds conversions over NiP_A catalyst

