Electronic Supplementary Information for:

Synthesis and Reactivity of a Germylene Stabilized by a Boraguanidinate Ligand.

Jiří Böserle, Mercedes Alonso, Roman Jambor, Aleš Růžička and Libor Dostál

Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of

Pardubice, Studentská 573, Pardubice 53210, Czech Republic. Fax: +420 466037068; Tel: +420

466037163

Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels,

Belgium

Table S1. Gibbs free energies (ΔG_{298}), enthalpies (ΔH_{298}) and entropies (ΔS_{298}) for the dimerization of germylene 1 both in gas phase and in benzene.^a

compound	$\Delta H_{gas}(VDZ)^{b}$	$\Delta G_{gas}(VDZ)^{b}$	$\Delta H_{gas}(VTZ)^{c}$	$\Delta G_{gas}(VTZ)^{c}$	$\Delta H_{bz}(VTZ)^{c}$	$\Delta G_{bz}(VTZ)^{c}$	$\Delta S_{bz} (VTZ)^{c}$
1 →(1) ₂	-24.7	-6.0	-18.0	0.7	-13.8	4.9	-62.8
1→digermen e	-12.3	8.8	-10.9	4.1	-8.3	6.7	-50.2

[a] ΔG_{298} and ΔH_{298} are given in kcal mol⁻¹ and ΔS_{298} in cal mol⁻¹ K⁻¹. [b] M06/cc-pVDZ(-PP) level of theory. [c] M06/cc-pVTZ(-PP) level of theory.

	1	2	3	4
empirical formula	$C_{44}H_{64}B_2Ge_2N_6$	$C_{34}H_{42}BGeN_3S_2$	$C_{34}H_{42}BGeN_3Se_2$	$C_{34}H_{42}BGeN_3Te_2$
cryst syst	Triclinic	monoclinic	monoclinic	orthorhombic
space group	<i>P</i> -1	P21/c	P21/c	Pbca
a[Å]	8.9930(5)	20.0901(14)	20.4250(16)	8.3340(5)
b[Å]	11.4140(6)	8.4960(4)	8.5540(7)	19.7050(18)
$c[\text{\AA}]$	11.9331(6)	19.6849(16)	19.569(2)	42.118(č)
a[deg]	112.083(3)	90	90	90
β[deg]	94.293(4)	91.921(6)	99.855(7)	90
γ[deg]	107.174(4)	90	90	90
Ζ	1	4	4	8
μ [mm ⁻¹]	1.456	1.063	3.052	2.566
D_x [Mg m ⁻³]	1.322	1.266	1.426	1.597
cryst size [mm]	0.37x0.17x0.17	0.42x0.17x0.09	0.25x0.24x0.18	0.40x0.14x0.13
θ range, [deg]	1 – 27.5	1 – 27.5	1 - 27.5	1 – 27.5
T_{min} , T_{max}	0.741, 0.853	0.755, 0.926	0.565, 0.690	0.569, 0.763
no. of reflections measured	17 968	28 460	30 924	35 467
no. of unique reflns, R_{int}^{a}	4807, 0.028	7423, 0.042	7728, 0.071	7678, 0.030
no. of observed reflns $[I > 2\sigma(I)]$	4318	5797	5729	6386
no. of parameters	244	370	370	370
S ^b all data	1.070	1.104	1.126	1.215
final R^b indices [$I > 2\sigma(I)$]	0.033	0.037	0.096	0.037
wR2 ^b indices (all data)	0.073	0.071	0.204	0.062
$\Delta \rho$, max., min. [e Å ⁻³]	1.122, -0.620	0.325, -0.379	2.033, -0.802	0.644, -0.681

Table S2.	Crystallograph	ic Data for	Studied (Compounds

 ${}^{a}R_{\text{int}} = \sum |F_{o}^{2} - F_{o,\text{mean}}^{2}| / \Sigma F_{o}^{2}, {}^{b}S = [\sum (w(F_{o}^{2} - F_{c}^{2})^{2}) / (N_{\text{diffrs}} - N_{\text{params}})]^{\frac{1}{2}}, {}^{b}R(F) = \sum |F_{o}| - |F_{c}|| / \Sigma |F_{o}|, wR(F^{2}) = [\sum (w(F_{o}^{2} - F_{c}^{2})^{2}) / (\sum w(F_{o}^{2})^{2})]^{\frac{1}{2}}$

	5	6	7	8
empirical formula	$C_{22}H_{32}BGeI_2N_3$	C23H35BGeIN3	C ₂₂ H ₃₃ BBrGeN ₃	C ₂₂ H ₃₃ BBr ₃ GeN ₃
cryst syst	monoclinic	triclinic	triclinic	triclinic
space group	P21/c	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
$a[\text{\AA}]$	14.7200(9)	8.4040(3)	8.3520(4)	9.480(3)
$b[\text{\AA}]$	8.2140(7)	11.0410(9)	10.4790(5)	9.5290(11)
c[Å]	21.3591(15)	13.8139(10)	13.5181(10)	31.902(6)
α[deg]	90	84.933(5)	95.684(5)	86.052(12)
β[deg]	94.762(7)	80.365(4)	100.864(6)	86.293(16)
γ[deg]	90	89.771(4)	90.338(4)	65.709(16)
Ζ	4	2	2	4
μ[mm ⁻¹]	3.602	2.457	3.066	5.762
D_x [Mg m ⁻³]	1.744	1.488	1.445	1.681
cryst size [mm]	0.23x0.16x0.14	0.42x0.35x0.30	0.32x0.19x0.15	0.29x0.18x0.07
θ range, [deg]	1 – 27.5	1 – 27.5 1 – 27.5		1 - 27.5
T _{min} , T _{max}	0.557, 0.684	0.472, 0.623	0.525, 0.751	0.404, 0.713
no. of reflections measured	24 377	25 885	24 163	18 932
no. of unique reflns, R_{int}^{a}	5768, 0.028	5735, 0.027	5291, 0.031	9959, 0.068
no. of observed reflns $[I \ge 2\sigma(I)]$	4971	5156	4313	8145
no. of parameters	262	262	253	541
S^{b} all data	1.117	1.076	1.085	1.281
final R^b indices $[I \ge 2\sigma(I)]$	0.031	0.031	0.031	0.086
wR2 ^b indices (all data)	0.062	0.077	0.063	0.190
$\Delta \rho$, max., min. [e Å ⁻³]	1.444, -0.897	1.490, -1.073	0.428, -0.668	1.120, -1.019

Table S2 (continue). Crystallographic Data for Studied Compounds

$${}^{a}R_{\text{int}} = \Sigma \left| F_{\text{o}}^{2} - F_{\text{o,mean}}^{2} \right| / \Sigma F_{\text{o}}^{2}, {}^{b}S = \left[\Sigma (w(F_{\text{o}}^{2} - F_{\text{c}}^{2})^{2}) / (N_{\text{diffrs}} - N_{\text{params}}) \right]^{\frac{1}{2}}, {}^{b}R(F) = \Sigma \left| F_{\text{o}} \right| - \left| F_{\text{c}} \right| / \Sigma \left| F_{\text{o}} \right|, wR(F^{2}) = \left[\Sigma (w(F_{\text{o}}^{2} - F_{\text{c}}^{2})^{2}) / (\Sigma w(F_{\text{o}}^{2})^{2}) \right]^{\frac{1}{2}}$$

	9	10	11	12	Ligand-precursor
empirical formula	C ₂₂ H ₃₃ BClGeN ₃	C ₂₈ H ₄₂ BGeN ₃	C40H50BGeN3	C48H68BGeN5	$C_{22}H_{34}BN_3$
				$.(C_6H_{14})$	
cryst syst	triclinic	triclinic	monoclinic	triclinic	triclinic
space group	<i>P</i> -1	<i>P</i> -1	P21/c	<i>P</i> -1	<i>P</i> -1
<i>a</i> [Å]	8.4670(3)	8.4040(3)	13.7260(7)	12.4100(12)	8.6562(5)
b[Å]	9.7781(7)	10.2400(7)	19.8081(17)	15.9710(5)	10.2840(4)
$c[\text{\AA}]$	14.5579(9)	17.1711(10)	14.7940(8)	26.276(3)	12.9948(8)
α[deg]	79.339(5)	99.375(6)	90	101.779(6)	73.067(4)
β[deg]	76.990(4)	92.648(6)	117.858(6)	95.207(8)	86.430(5)
γ[deg]	79.439(4)	107.632(5)	90	98.138(5)	76.579(3)
Ζ	2	2	4	4	2
μ[mm ⁻¹]	1.471	1.128	0.893	0.652	0.063
D_x [Mg m ⁻³]	1.334	1.211	1.226	1.173	1.084
cryst size [mm]	0.51x0.19x0.19	0.47x0.22x0.15	0.41x0.22x0.20	0.53x0.40x0.19	0.59x0.35x0.33
θ range, [deg]	1 – 27.5	1 – 27.5	1 – 27.5	1 – 27.5	1 – 27.5
T _{min} , T _{max}	0.658, 0.844	0.688, 0.859	0.808, 0.873	0.793, 0.923	0.976, 0.988
no. of reflections measured	23 008	28 009	34 637	90 026	18 373
no. of unique reflns, R_{int}^{a}	5205, 0.028	6234, 0.021	7937, 0.031	21719, 0.037	4843, 0.023
no. of observed reflns $[I \ge 2\sigma(I)]$	4578	5653	6527	17098	3991
no. of parameters	253	298	406	991	246
S^{b} all data	1.098	1.119	1.127	1.087	1.072
final R ^b indices [$I > 2\sigma(I)$]	0.036	0.026	0.034	0.045	0.050
wR2 ^b indices (all data)	0.082	0.067	0.066	0.102	0.120

 Table S2 (continue). Crystallographic Data for Studied Compounds

$${}^{a}R_{\text{int}} = \sum |F_{o}^{2} - F_{o,\text{mean}}^{2}| / \Sigma F_{o}^{2}, {}^{b}S = [\Sigma(w(F_{o}^{2} - F_{c}^{2})^{2}) / (N_{\text{diffrs}} - N_{\text{params}})]^{\frac{1}{2}}, {}^{b}R(F) = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, wR(F^{2}) = [\Sigma(w(F_{o}^{2} - F_{c}^{2})^{2}) / (\Sigma w(F_{o}^{2})^{2})]^{\frac{1}{2}}$$

Figure S1: Molecular structure of ligand precursor.

Figure S2: The ¹H NMR spectrum of 9 in C_6D_6 (*).

Figure S3: The VT-¹H NMR spectrum of **1** in toluene-D8 (*). Top-left 243 K, top-right 293 K, bottom-left 333K and bottom right 363 K.