Supporting Information

Azacalix[2]arene[2]carbazoles: Synthesis, Structure and Properties

Hui Xu, ${ }^{a}$ Fang-Jun Qian, ${ }^{a}$ Qiao-Xia Wu, ${ }^{a}$ Min Xue, ${ }^{b}$ Yong Yang, ${ }^{a, *}$ and Yong-Xiang
Chen ${ }^{c, *}$
${ }^{\text {a }}$ School of Science, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
${ }^{\mathrm{b}}$ School of Science, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China.
${ }^{c}$ Department of Chemistry, Tsinghua University, Beijing, 100190, China.

Email: yangyong@zstu.edu.cn

Scheme 1. Synthetic routes for 3, 6-diamino derived carbazole intermediates 5 and 7.

Scheme 2. Synthetic routes for " $2+1$ " fragments 9 and 10.

Scheme 3. One pot synthesis of symmetric macrocycles 1~3.

Scheme 4. Fragment coupling strategy for the synthesis of unsymmetrical macrocycle $\mathbf{4}$ and symmetrical macrocycle 3 .

All solvents for reactions and column chromatography were used directly as received. Melting points were uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AV 400 MHz or 300 MHz instruments. Chemical shifts were expressed in parts per million (δ) using residual solvent protons as internal standards. Chloroform ($\delta=7.26 \mathrm{ppm}$) was used as an internal standard for chloroform- d. Alcohol free chloroform was used as solvent for spectroscopic measurements, which was thoroughly washed with distilled water and freshly distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$. UV-vis data were recorded on UV-2501 PC SHIMADZU.

Compounds $\mathbf{6}^{51}, \mathbf{1 1}^{52}, \mathbf{1 3}^{53}$, and 14^{54} were synthesized according to similar literature procedures. All NMR experiments were performed on a Bruker AV 400 MHz instruments at 298 K if not specifically indicated.

$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(362 \mathrm{mg}, 1.5 \mathrm{mmol})$ was added into a mixture of acetic acid (1 mL) and acetic anhydride $(2 \mathrm{~mL})$ at room temperature and the mixture was stirred for 10
min. Then 9-(iso-butyl)carbazole $11(223 \mathrm{mg}, 1 \mathrm{mmol})$ was added slowly in portions over 5 min and heat was generated during the process. An additional 1 mL acetic acid was added. The mixture was stirred at this temperature for 15 min and then poured into distilled water (100 mL). A yellow precipitate was then collected by filtration, washed with water and dried under vacuum. The pure product as a yellow solid (194 $\mathrm{mg}, 62 \%$) was obtained by recrystallization from ethanol.
$\mathrm{Mp}:>300^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS, $298 \mathrm{~K}, \mathrm{ppm}$): $\delta 9.10$ (s, 2H, ArH), 8.48 (dd, 2H, J $=1.5 \mathrm{~Hz}, J=9.1 \mathrm{~Hz}, \operatorname{Ar} H), 7.53(\mathrm{~d}, 2 \mathrm{H}, J=9.1 \mathrm{~Hz}, \operatorname{Ar} H), 4.22(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 2.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.02\left(\mathrm{~d}, 6 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS, $298 \mathrm{~K}, \mathrm{ppm}$): $\delta 145.1,141.9,123.0,122.5,117.8$, 109.9, 51.6, 29.0, 20.5.

HRMS (ESI ${ }^{+}$) calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}$336.0960, found: 336.0951.

Palladium on active charcoal $(10 \%, 115 \mathrm{mg})$ was added in portions to a hot solution of 3, 6-dinitro-9-(iso-butyl)carbazole $12(0.423 \mathrm{~g}, 1.35 \mathrm{mmol})$ and hydrazine hydrate $(1 \mathrm{~mL})$ in THF $(30 \mathrm{~mL})$. The mixture was heated under reflux for 5 hours. After cooling to room temperature, the solid was filtrated off and the filtrate was concentrated. The residue was triturated with petroleum ether to give the product as a yellow solid ($249 \mathrm{mg}, 73 \%$). The product was directly for the next step without further purification and characterization.

3, 6-Diamino-9-(iso-butyl)carbazole 5 ($1.012 \mathrm{~g}, 4 \mathrm{mmol}$) was added under N_{2} atmosphere into a mixture of 1, 5-difluoro-2, 4-dinitrobenzene $\mathbf{8}$ ($0.816 \mathrm{~g}, 4 \mathrm{mmol}$) and triethylamine (5.8 mL) in THF (50 mL). Then the mixture was heated to reflux under nitrogen atmosphere overnight. After being cooled to room temperature, an orange solid precipitated from the solution. The solid was collected by filtration and washed with ethanol. The product was pure enough and further purification was not needed ($1.3 \mathrm{~g}, 78 \%$).
$\mathrm{Mp}:>300^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}, 298 \mathrm{~K}, \mathrm{ppm}$): $\delta 9.54$ (s, 4H, NH), 9.37 (s, 2H, $\mathrm{Ar} H$), 7.65 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{Ar} H$-carbazole), 7.18 (d, 4H, $J=8.1 \mathrm{~Hz}, \mathrm{Ar} H$-carbazole), 7.06 (d, $4 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{Ar} H$-carbazole), 5.39 (s, 2H, ArH), 3.90 (d, $4 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}$), $2.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 0.80\left(\mathrm{~d}, 12 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.

HRMS (APCI^{+}) calcd. for $\left[\mathrm{C}_{44} \mathrm{H}_{38} \mathrm{~N}_{10} \mathrm{O}_{8}+\mathrm{H}\right]^{+}$835.2952, found: 835.2940.

3, 6-Diamino-9-(2-ethylhexyl)carbazole $\mathbf{6}(309 \mathrm{mg}, 1 \mathrm{mmol})$ was added under N_{2} atmosphere into a mixture of 1, 5-difluoro-2, 4-dinitrobenzene 8 ($204 \mathrm{mg}, 1 \mathrm{mmol}$) and triethylamine $(1.4 \mathrm{~mL})$ in THF (30 mL) and the solution was stirred overnight under reflux. After being cooled to room temperature, the reaction mixture was concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the solvent was evaporated under reduced pressure and the residue was subjected to column chromatography (silica gel, dichloromethane as eluent). The product was obtained as
an orange solid ($166 \mathrm{mg}, 35 \%$).
$\mathrm{Mp}:>300^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, ~ \mathrm{TMS}, 298 \mathrm{~K}, \mathrm{ppm}$): $\delta 9.55$ ($\mathrm{s}, 4 \mathrm{H}, \mathrm{N} H$), $9.34(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{ArH}), 7.66$ (s, 4H, ArH-carbazole), 7.19 (d, 4H, $J=8.6 \mathrm{~Hz}, \mathrm{ArH}$-carbazole), 7.07 (d, $4 \mathrm{H}, J=8.5 \mathrm{~Hz}$, ArH-carbazole), 5.41 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar} H$), 4.02-3.87 (m, 4H, NCH2), 1.94$1.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.40-1.10\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 0.86\left(\mathrm{t}, 6 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.78(\mathrm{t}, 6 \mathrm{H}$, $\left.J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}, 298 \mathrm{~K}, \mathrm{ppm}$): δ 149.6, $140.01,139.95,129.2$, $128.50,128.48,125.8,124.7,122.64,122.60,119.3,110.15,110.10,95.9,47.5,38.9$, 30.8, 29.7, 28.62, 28.59, 24.0, 23.0, 14.0, 10.6.

HRMS (APCI ${ }^{+}$) calcd. for $\left[\mathrm{C}_{52} \mathrm{H}_{54} \mathrm{~N}_{10} \mathrm{O}_{8}+\mathrm{H}\right]^{+} 947.4204$, found: 947.4200.

This compound was synthesized according to a similar literature procedure ${ }^{\mathrm{S4}}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}, TMS, $298 \mathrm{~K}, \mathrm{ppm}$): $\delta 12.71$ (s, $1 \mathrm{H}, \mathrm{N} H$), 9.51 (d, 2H, $J=1.8 \mathrm{~Hz}, \operatorname{Ar} H), 8.40(\mathrm{dd}, 2 \mathrm{H}, J=1.8 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, \mathrm{Ar} H), 7.77(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}$, ArH).

A 100 mL Schlenk flask was charged with 3, 6-dinitro- 9 H -carbazole 14 ($1.23 \mathrm{~g}, 4.8$ $\mathrm{mmol}), \mathrm{NaH}(0.211 \mathrm{~g}, 5.28 \mathrm{mmol}, 60 \%$ in mineral oil) and 40 mL DMF. The resulting mixture was stirred for 30 min . 9-(4-bromobutyl)-carbazole $\mathbf{1 3}$ ($1.378 \mathrm{~g}, 4.8 \mathrm{mmol}$) was then added under argon and the mixture was stirred at room temperature overnight. The reaction mixture was quenched with 60 mL of water. The solid was collected by filtration and washed with methanol. The pure product as a yellow solid ($1.85 \mathrm{~g}, 81 \%$) was obtained via column chromatography (silica gel, petroleum ether: dichloromethane $=1: 1$ as eluent).

Mp: $253-254^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}, 298 \mathrm{~K}, \mathrm{ppm}$): $\delta 8.97$ (s, 2H, $\mathrm{Ar} H$), 8.31 (d, 2H, $J=$ $9.1 \mathrm{~Hz}, \mathrm{Ar} H), 8.07(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{Ar} H), 7.41(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{Ar} H), 7.26(\mathrm{t}, 4 \mathrm{H}$, $J=5.8 \mathrm{~Hz}, \mathrm{Ar} H), 7.09(\mathrm{~d}, 2 \mathrm{H}, J=9.1 \mathrm{~Hz}, \mathrm{Ar} H), 4.34\left(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 4.12$ (t, 2H, $J=6.9 \mathrm{~Hz}, \mathrm{NCH}_{2}$), 2.05-1.95 (m, 4H, CH_{2}).
${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}, TMS, $298 \mathrm{~K}, \mathrm{ppm}$): δ 145.0, 141.6, 140.3, 126.1, 123.0, 122.4, 120.7, 119.1, 111.3, 109.7, 43.5, 42.3, 26.4, 26.2.

HRMS (ESI ${ }^{+}$) calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}\right]^{+} 501.1539$, found: 501.1529; calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{K}\right]^{+} 517.1278$, found: 517.1269.

Palladium on charcoal $(10 \%, 115 \mathrm{mg})$ was added in portions to a hot solution of 9-(4-(9H-carbazol-9-yl)butyl)-3, 6-dinitrocarbazole 15 ($0.645 \mathrm{~g}, 1.35 \mathrm{mmol}$) and hydrazine monohydrate (1 mL) in THF (30 mL) and the mixture was heated under reflux for 5 hours. After being cooled to room temperature the solid was filtrated off and the filtrate was concentrated. The residue was triturated with petroleum ether to give the product as a yellow solid ($412 \mathrm{mg}, 73 \%$). The product was directly for the next step without further purification and characterization.

3, 6-diamino-9-(4-(9H-carbazol-9-yl)butyl)carbazole 7 ($125 \mathrm{mg}, 0.3 \mathrm{mmol}$) was added under N_{2} atmosphere into a mixture of 1, 5-difluoro-2, 4-dinitrobenzene $\mathbf{8}$ (122 $\mathrm{mg}, 0.6 \mathrm{mmol})$ and triethylamine $(0.5 \mathrm{~mL})$ in THF (20 mL). The solution was stirred overnight under reflux. After being cooled to room temperature, the reaction mixture was concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL), washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the solvent was evaporated under reduced pressure and the residue was subjected to column chromatography (silica gel, dichloromethane: petroleum ether $=5: 1$ as eluent). The product was obtained as an orange solid ($220 \mathrm{mg}, 93 \%$).
$\mathrm{Mp}: 172-173{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}, 298 \mathrm{~K}, \mathrm{ppm}$): $\delta 10.06$ (s, 2H, NH), 9.21 (d, 2H, $J=$ $7.8 \mathrm{~Hz}, \mathrm{ArH}), 8.14(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.92$ (s, 2H, ArH), 7.47 (t, 2H, $J=7.9$ $\mathrm{Hz}, \operatorname{Ar} H), 7.38(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}, \operatorname{Ar} H), 7.34-7.27(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar} H), 6.70(\mathrm{~d}, 2 \mathrm{H}, J=$ $13.6 \mathrm{~Hz}, \operatorname{Ar} H), 4.41\left(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 4.20\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 2.05$ (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}, 298 \mathrm{~K}, \mathrm{ppm}$): $\delta 160.6,157.9,148.9,148.8,139.8$, 139.6, 127.6, 127.4, 127.0, 125.3, 124.3, 122.7, 122.5, 120.1, 118.7, 118.1, 110.3, $108.0,102.7,102.5,42.9,42.1,31.4,29.2,26.2,26.1,22.2,13.6$.

HRMS (APCI ${ }^{+}$): m / z calcd. for $\left[\mathrm{C}_{40} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{8}+\mathrm{H}\right]^{+} 787.2076$, found: 787.2059.

3, 6-Diamino-9-(2-ethylhexyl)carbazole $6(93 \mathrm{mg}, 0.3 \mathrm{mmol})$ was added under N_{2} atmosphere into a mixture of 1, 5-difluoro-2, 4-dinitrobenzene $\mathbf{8}(122 \mathrm{mg}, 0.6 \mathrm{mmol})$ and triethylamine $(0.5 \mathrm{~mL})$ in THF (20 mL) and the solution was stirred overnight under reflux. After being cooled to room temperature, the reaction mixture was concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the solvent was evaporated under reduced pressure and the residue was subjected to column chromatography (silica gel, dichloromethane: petroleum ether $=2: 1$ as eluent). The product was obtained as a reddish brown solid ($184 \mathrm{mg}, 91 \%$).
$\mathrm{Mp}: 120-121^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}, 298 \mathrm{~K}, \mathrm{ppm}$): $\delta 10.09$ (s, 2H, NH), 9.21 (d, $J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}, \operatorname{Ar} H), 7.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 7.58(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \operatorname{ArH}), 7.42(\mathrm{~d}, 2 \mathrm{H}, J=8.6$ $\mathrm{Hz}, \mathrm{Ar} H), 6.75(\mathrm{~d}, 2 \mathrm{H}, J=13.3 \mathrm{~Hz}, \mathrm{Ar} H), 4.28\left(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.16-2.08(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C} H), 1.50-1.25(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH})_{2}\right), 0.99\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.89\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS, $298 \mathrm{~K}, \mathrm{ppm}$): δ 161.1, 158.4, 149.5, 149.3, 140.8, 128.01, 127.99, 127.8, 127.5, 127.0, 126.9, 124.8, 123.2, 118.5, 111.2, 103.3, 103.0, 48.1, 39.6, 31.0, 29.7, 28.8, 24.5, 23.0, 14.0, 10.9.

HRMS (APCI^{-}) calcd. for $\left[\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{8}-\mathrm{H}\right]^{-}$676.1967, found: 676.1966.

Fragment Coupling Strategy: 3, 6-diamino-9-(4-(9H-carbazol-9-yl)butyl)carbazole 7 ($25 \mathrm{mg}, 0.06 \mathrm{mmol}$), " $2+1$ " fragment compound 9 ($47 \mathrm{mg}, 0.06 \mathrm{mmol}$), and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(0.15 \mathrm{mmol}, 21 \mathrm{mg})$ were combined under ambient atmosphere. Anhydrous DMSO (5 mL) was added. The reaction mixture was heated to $100^{\circ} \mathrm{C}$ and stirred vigorously overnight. The reaction mixture was then partitioned between EtOAc (40 mL) and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and the resulting mixture separated. The aqueous layer was extracted twice with EtOAc (10 mL). The combined organic phase was washed with brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuum. The residue was subjected to column chromatography (silica gel, dichloromethane: petroleum ether $=7: 1$ as eluent). The product was obtained as a yellow solid ($31 \mathrm{mg}, 45 \%$).

One Pot Strategy: 9-(4-(9H-carbazol-9-yl)butyl)-9H-carbazole-3, 6-diamine 7 (125 $\mathrm{mg}, 0.3 \mathrm{mmol}$), 1, 5-difluoro-2, 4-dinitrobenzene 8 ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$), and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.75 \mathrm{mmol}, 104 \mathrm{mg}$) were combined under ambient atmosphere. Anhydrous DMSO (10 mL) was added. The reaction mixture was heated to $100^{\circ} \mathrm{C}$ and stirred vigorously overnight. The reaction mixture was then partitioned between EtOAc (80 mL) and $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$, the resulting mixture separated. The aqueous layer was extracted twice with EtOAc (30 mL). The combined organic phase was washed with brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuum. The residue was subjected to column chromatography (silica gel, dichloromethane: petroleum ether $=7: 1$ as eluent). The product was obtained as a yellow solid (83 mg , 48\%).
$\mathrm{Mp}:>300^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}, TMS, $298 \mathrm{~K}, \mathrm{ppm}$): $\delta 9.64$ (s, 4H, NH), 9.05 (s, 2H, $\operatorname{Ar} H), 8.12(\mathrm{~d}, 4 \mathrm{H}, J=7.7 \mathrm{~Hz}, \operatorname{Ar} H), 7.56(\mathrm{~d}+\mathrm{s}, 8 \mathrm{H}, J=7.3 \mathrm{~Hz}, \operatorname{Ar} H), 7.36(\mathrm{t}, 4 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}, \operatorname{Ar} H), 7.14(\mathrm{t}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Ar} H), 7.06(\mathrm{~d}, 4 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{Ar} H), 6.90(\mathrm{dd}$, $\left.4 \mathrm{H}, J=8.6 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}, \mathrm{Ar} H), 4.79(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 4.39(\mathrm{t}, 4 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{NCH})_{2}\right)$, $3.97\left(\mathrm{t}, 4 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 1.74-1.66\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.52-1.42(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$).

HRMS (APCI^{+}) calcd. for $\left[\mathrm{C}_{68} \mathrm{H}_{52} \mathrm{~N}_{12} \mathrm{O}_{8}+\mathrm{H}\right]^{+}$1165.4109, found: 1165.4108.

Strategy one: 3, 6-Diamino-9-(2-ethylhexyl)carbazole 6 ($31 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added under N_{2} atmosphere into a mixture of " $2+1$ " fragment compound 9 ($79 \mathrm{mg}, 0.1$
mmol) and triethylamine (0.2 mL) in THF (20 mL) and the solution was stirred overnight under reflux. After being cooled to room temperature, the reaction mixture was concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) and washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the solvent was evaporated under reduced pressure and the residue was subjected to column chromatography (silica gel, dichloromethane: petroleum ether $=10: 1$ as eluent). The product was obtained as an orange solid ($64 \mathrm{mg}, 61 \%$).

Strategy two: 9-(4-(9H-carbazol-9-yl)butyl)-9H-carbazole-3,6-diamine 7 (125 mg , 0.3 mmol) was added under N_{2} atmosphere into a mixture of " $2+1$ " fragment compound $10(203 \mathrm{mg}, 0.3 \mathrm{mmol})$ and triethylamine $(0.5 \mathrm{~mL})$ in THF $(20 \mathrm{~mL})$ and the solution was stirred overnight under reflux. After being cooled to room temperature, the reaction mixture was concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the solvent was evaporated under reduced pressure and the residue was subjected to column chromatography (silica gel, dichloromethane: petroleum ether $=10: 1$ as eluent). The product was obtained as an orange solid (197 $\mathrm{mg}, 62 \%$).
$\mathrm{Mp}:>300^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}, TMS, $298 \mathrm{~K}, \mathrm{ppm}$): $\delta 9.680(\mathrm{~s}, 2 \mathrm{H}$, NH), 9.673 (s, 2H, NH), $9.06(\mathrm{~s}, 2 \mathrm{H}, \operatorname{Ar} H), 8.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArH}), 7.66-7.58$ (m, 6H, ArH), 7.46 (t, 2H, $J=7.7 \mathrm{~Hz}, \mathrm{Ar} H), 7.38(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} H), 7.23(\mathrm{t}$, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{Ar} H), 7.17(\mathrm{t}, 2 \mathrm{H}, J=4.4 \mathrm{~Hz}, \mathrm{Ar} H), 7.03-6.95$ (m, 4H, ArH), 4.95 (s, $2 \mathrm{H}, \mathrm{Ar} H), 4.48\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 4.34(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{NCH}$), $3.98(\mathrm{~d}, 2 \mathrm{H}$, $\left.J=7.4 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 1.90-1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.75-1.62\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \& \mathrm{CH}\right)$, $1.06-0.96\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 0.72-0.64\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

HRMS (APCI ${ }^{+}$) calcd. for $\left[\mathrm{C}_{60} \mathrm{H}_{53} \mathrm{~N}_{11} \mathrm{O}_{8}+\mathrm{H}\right]^{+}$1056.4157, found: 1056.4153.

References:

S1: Ashok Kumar Mishra.; Josemon Jacob.; Klaus Müllen. Dyes and Pigments 2007, 75, 1-10.

S2: Hammond, M.; Elliott, R. L.; Gillaspy, M. L.; Hager, D. C.; Hank, R. F.; LaFlamme, J. A.; Oliver, R. M.; DaSilva-Jardine, P. A.; Stevenson, R. W.; Mack, C. M.; Cassella, J. V. Biorg. Med. Chem. Lett. 2003, 13, 1989-1992.

S3: Li, X.; Mintz, E.-A.; Bu, X.-R.; Zehnder, O.; Bosshardb, C.; GuÈnterb, P. Tetrahedron 2000, 56, 5785-5791.

S4: Wei-Jia Chen.; Chen-Xi Zhou.; Pei-Fen Yao.; Xiao-Xiao Wang.; Jia-Heng Tan.; Ding Li.; Tian-Miao Ou.; Lian-Quan Gu.; Zhi-Shu Huang. Bioorg. Med. Chem. 2012, 20, 2829-2836.

