Electronic Supplementary Information High singlet oxygen production and negative solvatochromism of octabrominated 3-pyrrolyl boron dipyrromethenes[†]

Ritambhara Sharma,^a Habtom B. Gobeze,^b Tamal Chatterjee,^a Paul. A. Karr,^c Francis D'Souza^{b,*} and Mangalampalli Ravikanth^{a,*}

^aDepartment of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India. E-mail: <u>ravikanth@chem.iitb.ac.in</u>

^bDepartment of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, United States; E-mail: <u>Francis.dsouza@unt.edu</u>

^cDepartment of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska 68787, USA

Experimental Section	S2
Figure S1: ¹ H NMR spectrum of compound 2a recorded in CDCl ₃ .	S4
Figure S2: ¹¹ B NMR spectrum of compound 2a recorded in CDCl ₃ .	S5
Figure S3: ¹⁹ F NMR spectrum of compound 2a recorded in CDCl ₃ .	S 6
Figure S4: ¹³ C NMR spectrum of compound 2a recorded in CDCl ₃ .	S7
Figure S5: ¹ H NMR spectrum of compound 2b recorded in CDCl ₃ .	S8
Figure S6: ¹⁹ F NMR spectrum of compound 2b recorded in CDCl ₃ .	S9
Figure S7: ¹⁹ F NMR spectrum of compound 2b recorded in CDCl ₃ .	S10
Figure S8: ¹³ C NMR spectrum of compound 2b recorded in CDCl ₃ .	S11
Figure S9: MALDI-TOF-Mass spectrum of compound 2a.	S12
Table S1: Comparison of 1c and 2a of crystallographic data, some selected bond leng	gths [Å],
bond angles [°] and dihedral angles [°] obtained from X-ray crystal structure.	S13
Table S2: Absorption data of compounds 1a and 2a in different solvents.	S14

Experimental Section

Chemicals. BF₃.OEt₂ and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) obtained from Spectrochem (India) were used as obtained. Column chromatography was performed on silica (60-120 mesh). All other chemicals used for the synthesis were reagent grade unless otherwise specified, the bulk solvents utilized in the syntheses were from Fischer Chemicals. Tetra-*n*-butylammonium perchlorate, (*n*-Bu₄N)ClO₄ used in electrochemical studies was from Fluka Chemicals.

Spectral Measurements. The UV-visible spectral measurements were carried out either on a Shimadzu Model 2550 double monochromator UV-visible spectrophotometer or a Jasco V-670 spectrophotometer. The steady-state fluorescence and phosphorescence spectra were measured by using a Horiba Jobin Yvon Nanolog UV-visible-NIR spectrofluorimeter equipped with a PMT (for UV-visible) and InGaAs (for NIR) detectors. A right angle detection method was used for emission measurements. For phosphorescence measurements, a pulsed xenon lamp was used. The ¹H, ¹¹B, ¹³C and ¹⁹F NMR studies were carried out on a 400 MHz and 500 MHz instruments in CDCl₃, tetramethylsilane (TMS) was used as an internal standard. The HRMS spectra were recorded with Bruker maxis impact 282001.00081 using electron spray ionization method and TOF analyzer. Cyclic voltammetric (CV) studies were carried out with electrochemical system utilizing the three electrode configuration consisting of a glassy carbon (working electrode), platinum wire (auxiliary electrode) and saturated calomel (reference electrode) electrodes. The experiments were done in dry dichloromethane using 0.1 M tetrabutylammonium perchlorate as supporting electrolyte (TBAP). Half wave potentials were measured using DPV and also calculated manually by taking the average of the cathodic and anodic peak potentials.

X-ray crystal structure analysis:

Single-crystal X-ray structure analysis was performed on a Rigaku Saturn724 diffractometer that was equipped with a low-temperature attachment. Data were collected at 100 K using graphitemonochromated Mo-K_a radiation (λ_a = 0.71073 Å) with the ω -scan technique. The data were reduced by using CrystalClear-SM Expert 2.1 b24 software. The structures were solved by direct methods and refined by least-squares against F² utilizing the software packages SHELXL-97,² SIR-92,³ WINGX⁴ and OLEX2.⁵ All non-hydrogen atoms were refined anisotropically.

General experimental procedure for compounds 2a and 2b

Sample of 3-pyrrolyl BODIPY 1a/1b (1 equiv.) was dissolved in 10 mL CH₂Cl₂ and nitrogen was purged for 5 minutes. Bromine (400 equiv.) was added to this solution and stirred at room temperature for 5 minutes. The progress of the reaction was monitored by TLC analysis by taking aliquots of the reaction mixture at frequent intervals. After completion of the reaction as judged by TLC analysis, the reaction mixture was diluted with CH₂Cl₂ and washed thoroughly with saturated solution of sodium thiosulphate. The organic layers were combined and dried over anhydrous sodium sulphate. The solvent was evaporated to dryness on rotary evaporator under vacuum. The crude compound was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (97:3 v/v) as eluent and desired pure product 2a/2b was obtained as dark solid.

2a: Yield, 90%; ¹H NMR (500 MHz, CDCl₃, δ in ppm): 2.48 (s, 3 H) 7.15 (d, *J*=8.04 Hz, 2 H) 7.36 (d, *J*=8.80 Hz, 2 H) 9.47 (br. s., 1 H); ¹³C NMR (125 MHz, CDCl₃, δ in ppm): 140.9, 128.6, 127.0, 120.7, 105.9, 105.8, 105.0, 21.8; ¹⁹F NMR (470.5 MHz, CDCl₃, δ in ppm) –127 (q, ³*J*(B,F), –151 (q, ³*J*(B,F); ¹¹B NMR (160.MHz, CDCl₃, δ in ppm) 0.38 (t, ³*J*(B,F);

2b: Yield, 88%; ¹H NMR (500 MHz, CDCl₃, δ in ppm): 2.48 (s, 3 H) 7.28-7.30 (m, 2 H) 7.55-7.59 (m, 3 H) 9.47 (br. s., 1 H); ¹³C NMR (125 MHz, CDCl₃, δ in ppm): 144.6, 143.4, 134.9, 131.7, 130.7, 129.5, 128.9, 128.7, 125.7, 124.0, 120.6, 117.9, 106.0, 105.9, 105.0, 37.2, 32.1, 31.6, 14.3, ¹⁹F NMR (470.5 MHz, CDCl₃, δ in ppm) –127 (q, ³*J*(B,F), –151 (q, ³*J*(B,F); ¹¹B NMR (160.MHz, CDCl₃, δ in ppm) 0.38 (t, ³*J*(B,F);

Figure S1: ¹H NMR spectrum of compound 2a recorded in CDCl₃.

Figure S2: ¹¹B NMR spectrum of compound 2a recorded in CDCl₃.

Figure S3: ¹⁹F NMR spectrum of compound 2a recorded in CDCl₃.

Figure S4: ¹³C NMR spectrum of compound 2a recorded in CDCl₃.

FigureS5: ¹H NMR spectrum of compound **2b** recorded in CDCl₃.

Figure S6: ¹¹B NMR spectrum of compound 2b recorded in CDCl₃.

Figure S7: ¹⁹F NMR spectrum of compound **2b** recorded in CDCl₃.

Figure S8: ¹³C NMR spectrum of compound 2b recorded in CDCl₃.

Figure S9: MALDI-TOF-Mass spectrum of compound 2b.

Parameters	1c*	2a
mol formula	$C_{23}H_{22}BF_2N_3O_2$	$C_{20}H_8BBr_8F_2N_3$
cryst sym	Tetragonal	Monoclinic
space group	P 42/ _n	P21/c
a (Å)	14.5918(2)	11.146(3)
b (Å)	14.5918(2)	9.145(2)
c (Å)	21.0203(6)	24.621(6)
α (deg)	90.00	90.00
β (deg)	90.00	101.099(4)
γ (deg)	90.00	90.00
V (Å3)	4475.66(15)	2462.7(10)
Ζ	8	4
B-F2	1.394	1.393
B-F1	1.394	1.370
B1-N2	1.551	1.562
B1-N1	1.526	1.552
C5-C14	1.479	1.499
F1-B-F2	108.99	110.54
C15C14C5C6	72.08	93.57

 Table S1: Comparison of 1c and 2a of crystallographic data, some selected bond lengths [Å],

 bond angles [°] and dihedral angles [°] obtained from X-ray crystal structure.

* data taken from reference no. 16.

Solvent	$\lambda_{abs}(nm)$	$\log \epsilon_{max}$	$\lambda_{abs}(nm)$	$\log\epsilon_{max}$
	(2 a)	(2a)	(1a)	(1a)
Toluene	613	4.79	581	4.96
Benzene	612	4.66	581	4.95
Chloroform	610	4.72	578	4.96
DCM	598	4.75	575	4.95
EtoAc	571	4.57	574	4.94
THF	555	4.57	577	4.95
CH3CN	547	4.66	570	4.91
DMF	511	4.57	579	4.93

 Table S2: Absorption data of compounds 1a and 2a in different solvents.