Electronic Supplementary Information

Systematical investigation of in vitro molecular interaction between fluorescent carbon dots and human serum albumin

Shan Huang^{a,b}, Hangna Qiu^a, Jiangning Xie^a, Chusheng Huang^a, Wei Su^a, Baoqing Hu^b and Qi Xiao^{a,b,*}

^a College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning
530001, P. R. China
^b Key Laboratory of Beibu Gulf Environment Change and Resources Utilization (Guangxi Teachers Education University), Ministry of Education, P. R. China

* Corresponding author. Tel.: +86 771 3908065; Fax: +86 771 3908065; E-mail address: <u>qi.xiao@whu.edu.cn</u>

Fig. S1. The relative quantum yield of CDs.

Fig. S2. Fluorescence decay traces of CDs.

Fig. S3. Influence of pH value on the fluorescence property of CDs.

Fig. S4. MALDI-TOF-MS of CDs.

Fig. S5. Influences of CDs with different concentrations on the steady-state fluorescence intensity of HSA at 298 K, 304 K and 310 K.

Fig. S6. Fluorescence decay curves of CDs and HSA-CDs system.

Fig. S7. Influences of CDs with different concentrations on the steady-state fluorescence intensity of HSA at three different pH values (pH 4.0, 5.0 and 7.0).

Fig. S8. Influences of CDs with different concentrations on the steady-state fluorescence intensity of HSA in the absence and presence of 0.2 M NaCl.

Fig. S9. Plots of $\log(F_0-F)/F$ versus $\log[CDs]$ for HSA-CDs system at three different

temperatures.