Table s1. Spectroscopic data for all compounds.

Compound	$\mathrm{IR} ; \mathrm{v}(\mathrm{CO}) \mathrm{cm}^{-1}$	${ }^{1} \mathrm{H} N \mathrm{NR} ; \delta(\mathrm{SCH}) \mathrm{ppm}$	${ }^{13} \mathrm{C} \mathrm{NMR;} \mathrm{\delta(CO)} \mathrm{ppm}$
Y1	1515	4.20	182.50
$\mathbf{1}$	1646	4.93 (trans)	
Y2		5.62 (cis)	194.48
	1539	4.35	178.05
$\mathbf{2}$	1630	5.05 (trans)	192.17
Y3	1537	5.66 (cis)	180.09
$\mathbf{3}$	1637	4.20	193.87

Table s2. Selected bond lengths [\AA] and angles [${ }^{\circ}$] for structure of $\mathbf{3}$.

Bond Lengths	Value
$\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$2.3449(9)$
$\mathrm{Pd}(1)-\mathrm{Cl}(1) 1$	$2.3449(9)$
$\mathrm{Pd}(1)-\mathrm{C}(1)$	$2.118(5)$
$\mathrm{Pd}(1)-\mathrm{Cl}(1) 1$	$2.118(5)$
$\mathrm{S}(1)-\mathrm{C}(1) 1$	$1.787(5)$
$\mathrm{S}(1)-\mathrm{C}(1)$	$1.781(6)$
$\mathrm{S}(1)-\mathrm{C}(9)$	$1.815(5)$
$\mathrm{O}(1)-\mathrm{C}(10)$	$1.233(6)$
$\mathrm{O}(2)-\mathrm{C}(2)$	$1.207(6)$
$\mathrm{O}(3)-\mathrm{N}(1)$	$1.218(6)$
Bond angles	Value
$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1) 1$	180.0
$\mathrm{C}(1) 1-\mathrm{Pd}(1)-\mathrm{Cl}(1) 1$	$91.68(13)$
$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$91.68(13)$
$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1) 1$	$88.32(13)$
$\mathrm{C}(1) 1-\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$88.32(13)$
$\mathrm{C}(1) 1-\mathrm{Pd}(1)-\mathrm{C}(1)$	180.0
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(10)$	$104.4(2)$
$\mathrm{C}(9)-\mathrm{S}(1)-\mathrm{C}(1)$	$102.7(3)$
$\mathrm{C}(9)-\mathrm{S}(1)-\mathrm{C}(10)$	$100.2(3)$
$\mathrm{O}(2)-\mathrm{N}(1)-\mathrm{O}(3)$	$123.4(5)$
$\mathrm{O}(2)-\mathrm{N}(1)-\mathrm{C}(6)$	$118.8(4)$
$\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{C}(6)$	$117.9(4)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{Pd}(1)$	$107.8(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Pd}(1)$	$112.3(3)$

Table s3. Selected bond lengths [A°] and bond angles [${ }^{\circ}$] of complexes 1-3 at the BP86/def2-SVP level of theory.

1		2		3	
Bond distance	Value	Bond distance	Value	Bond distance	Value
Pd1-C5	2.12	Pd1-C5	2.13	Pd1-C8	$2.129(2.118)^{\text {a }}$
Pd1-C28	2.12	Pd1-C28	2.13	Pd1-C35	2.129(2.118)
Pd1-Cl2	2.36	Pd1-Cl2	2.35	Pd1-Cl29	2.354(2.345)
Pd1-Cl25	2.36	Pd1-Cl25	2.35	Pd1-Cl2	2.354(2.345)
Bond angles	Value	Bond angles	Value	Bond angles	Value
C5-Pd1-C28	180.0	C5-Pd1-C28	180.0	C8-Pd1-C35	180.0(180.0)
$\mathrm{Cl} 2-\mathrm{Pd} 1-\mathrm{Cl} 25$	180.0	$\mathrm{Cl} 2-\mathrm{Pd} 1-\mathrm{Cl} 25$	180.0	$\mathrm{Cl} 2-\mathrm{Pd} 1-\mathrm{Cl} 29$	180.0(180.0)
$\mathrm{C} 5-\mathrm{Pd} 1-\mathrm{Cl} 2$	92.29	$\mathrm{C} 5-\mathrm{Pd} 1-\mathrm{Cl} 2$	92.48	$\mathrm{C} 8-\mathrm{Pd} 1-\mathrm{Cl} 2$	92.70(91.68)
C5-Pd1-Cl25	87.70	C5-Pd1-Cl25	87.52	C35-Pd1-Cl2	87.30(88.32)
$\begin{gathered} \mathrm{Cl} 28-\mathrm{Pd} 1- \\ \mathrm{Cl} 25 \end{gathered}$	92.30	$\mathrm{Cl} 28-\mathrm{Pd} 1-\mathrm{Cl} 25$	92.48	C35-Pd1-Cl29	92.70(91.68)
C28-Pd1-Cl2	87.71	C28-Pd1-Cl2	87.52	C8-Pd1-Cl29	87.30(88.32)
${ }^{\text {a }}$ The experimental values are given in parenthesis.					

Table s4. The most important donor \rightarrow acceptor interactions energy concern to Pd-C bonds at BP86/def2-SVP level of theory
Donor Acceptor Type E^{2} (kcal/mol)

Complex 1

$\mathrm{Pd}(1)-\mathrm{C}(28)$	$\mathrm{Pd}(1)-\mathrm{Cl}(25)$	$\sigma \rightarrow \sigma^{*}$	15.45
$\mathrm{Pd}(1)-\mathrm{C}(28)$	$\mathrm{S}(26)-\mathrm{C}(44)$	$\sigma \rightarrow \sigma^{*}$	4.57
Complex 2			
$\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$\sigma \rightarrow \sigma^{*}$	5.31
$\mathrm{Pd}(1)-\mathrm{C}(28)$	$\mathrm{Pd}(1)-\mathrm{C}(28)$	$\sigma \rightarrow \sigma^{*}$	20.55
$\mathrm{Pd}(1)-\mathrm{C}(28)$	$\mathrm{Pd}(1)-\mathrm{C}(28)$	$\sigma \rightarrow \sigma^{*}$	15.01
$\mathrm{Pd}(1)-\mathrm{C}(28)$	$\mathrm{S}(26)-\mathrm{C}(44)$	$\sigma \rightarrow \sigma^{*}$	4.50
Complex 3			
$\mathrm{Pd}(1)-\mathrm{Cl}(29)$	$\mathrm{Pd}(1)-\mathrm{Cl}(29)$	$\sigma \rightarrow \sigma^{*}$	5.19
$\mathrm{Pd}(1)-\mathrm{Cl}(29)$	$\mathrm{Pd}(1)-\mathrm{Cl}(29)$	$\sigma \rightarrow \sigma^{*}$	19.69
$\mathrm{Pd}(1)-\mathrm{C}(35)$	$\mathrm{Pd}(1)-\mathrm{Cl}(29)$	$\sigma \rightarrow \sigma^{*}$	15.42
$\mathrm{Pd}(1)-\mathrm{C}(35)$	$\mathrm{O}(31)-\mathrm{C}(37)$	$\sigma \rightarrow \sigma^{*}$	14.07

Optimization of Mizoroki-Heck reaction.

In the first optimization, we explore the effect of the catalyst loading on the reaction. Catalyst concentration has an important effect on the reaction proceed. If the concentration of complex 3 decreased, the yield of reaction shows a beat decrease (Table 9 , entry 2). At the very low catalyst concentration (0.001 mmol), the performance of catalyst falls down and will be stop as if the catalyst was not there (Table 9, entries 3 and 4). Also, excessive amount of catalyst did not increase the yields significantly (Table 9, entry 5). Therefore, the low catalyst concentration of 0.005 mmol was chosen as the best economically catalyst loading.

Having the 0.005 mmol of catalyst, the solvent optimization stage was done with several commonly used solvents. Polar aprotic solvents such as DMF, NMP and EtOH gave excellent conversions at reflux temperature (Table 9, Entries 1, 6 and 7, respectively). However, water required additional time for completing coupling reaction (Table 9, Entry 8). Also, non-polar solvents such as toluene and hexane were tested and results showed that the conversion for the desired coupling product was low (Table 9 Entries 9 and 10).

Next, we test some of organic and inorganic bases such as amines and carbonates to explore the effect of base. It has usually plays important roles in such cross-coupling reactions which can accelerate reaction proceed. Among the tested inorganic bases, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ has the most accelerating effect (Table 9, entry 12), while other bases, $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and NaOAc proved to be less active (Table 9, Entries 2, 11 and 13). Organic base NEt 3 or pyridine shows inferior results and slow reaction rates compared to inorganic bases (Table 9, entries 14 and 15).

Finally, the reactions were carried out at different temperature. As the temperature of the reactions was decreased, increasing the reaction time for completion was observed (Table 9, entries 16-18). So, the reactions were performed at reflux temperature to gives the coupled products at highest yield.

In order to choosing the best catalyst from the complexes 1-3, the catalytic activities of these complexes were studied in same reaction conditions (Table 9, entries 19 and 20). The catalytic activity showed that complex $\mathbf{3}$ (87%) was superior to the other $\mathbf{1}$ and $\mathbf{2}$ (76 and 82%) complexes. Although these catalytic performances are not so distinguishable, it seems that the catalytic activity of the $\mathrm{Pd}(\mathrm{II})$ complexes depending on the position of the phenyl ring substituent, and increasing in this order: 4-nitrophenyl (3)> 3 -nitrophenyl (2)> phenyl (1). This trend seems to fit the electronic nature and position of the substituents on phenyl ring, in which the electron-withdrawing - NO_{2} group at the para position has more capability to stabilize sulfur ylide-Pd precursor structure compared to the electron-withdrawing $-\mathrm{NO}_{2}$ group at the improper meta position and electronically neutral phenyl ring.

Table s5. Optimizations for the Mizoroki-Heck cross-coupling reaction ${ }^{\text {a }}$

		 Solvent, Cataly			
Entry	Base	Cat. Loading(mmol)	Solvent	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Yield
1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	0.05	DMF	130	83
2	$\mathrm{K}_{2} \mathrm{CO}_{3}$	0.005	DMF	130	80
3	$\mathrm{K}_{2} \mathrm{CO}_{3}$	0.001	DMF	130	48
4	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	DMF	130	-
5	$\mathrm{K}_{2} \mathrm{CO}_{3}$	0.1	DMF	130	90
6	$\mathrm{K}_{2} \mathrm{CO}_{3}$	0.005	NMP	130	80
7	$\mathrm{K}_{2} \mathrm{CO}_{3}$	0.005	Ethanol	75	72
8	$\mathrm{K}_{2} \mathrm{CO}_{3}$	0.005	$\mathrm{H}_{2} \mathrm{O}$	100	58
9	$\mathrm{K}_{2} \mathrm{CO}_{3}$	0.005	Toluene	110	46
10	$\mathrm{K}_{2} \mathrm{CO}_{3}$	0.005	Hexane	80	40
11	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	0.005	DMF	130	70
12	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	0.005	DMF	130	89
13	NaOAc	0.005	DMF	130	57
14	NEt_{3}	0.005	DMF	130	40
15	Pyridine	0.005	DMF	130	43
16	${\mathrm{Cs} 2 \mathrm{CO}_{3}}$	0.005	DMF	25	55
17	${\mathrm{Cs} 2 \mathrm{CO}_{3}}$	0.005	DMF	60	67
18	${\mathrm{Cs} 2 \mathrm{CO}_{3}}$	0.005	DMF	90	78
$19^{\text {c }}$	${\mathrm{Cs} 2 \mathrm{CO}_{3}}$	0.005	DMF	130	76
$20^{\text {d }}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	0.005	DMF	130	82

${ }^{\text {a }}$ Reaction conditions for Mizoroki-Heck cross-coupling reaction: bromobenzene (0.5 mmol), styrene (0.75 mmol), base (1.5 mmol), DMF (2 mL), catalyst $3,4 \mathrm{~h}$, in the air.
${ }^{\text {b }}$ Catalyst 1
${ }^{\text {c }}$ Catalyst 2

Fig. s1. Illustration of calculated $\operatorname{HOMO}(a, c$, and e) and LUMO (b, d, and f) molecular orbitals for complexes 1-3, respectively

SEM Images of recovered catalyst

Characterization of Mizoroki-Heck reaction products

Data for (E)-1,2-Diphenylethene (1g)

M.p. $121-122{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{H}(\mathrm{ppm}): \delta=7.10(\mathrm{~s}, 2 \mathrm{H}), 7.24(\mathrm{t}, 2 \mathrm{H}), 7.34(\mathrm{t}, 4 \mathrm{H})$, $7.49(\mathrm{~d}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{c}}(\mathrm{ppm}): \delta=127.00,128.09,128.16,128.81$ [1].

Data for (E)-1-Methyl-4-styrylbenzene (2g)

M.p. $114-116{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (89.60 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta_{H}(\mathrm{ppm}): \delta=2.39(\mathrm{~s}, 3 \mathrm{H}), 6.88-7.87(\mathrm{~m}, 11 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{c}(\mathrm{ppm}): \delta=21.29,126.79,126.87,127.82,127.87,128.78,129.11,129.75$, 134.68, 134.56, 137.48, 137.61 [2].

Data for trans-4-methoxystilbene (3g)

M.p. $134-136{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400.61 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}}(\mathrm{ppm}): 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.82-7.43(\mathrm{~m}, 11 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.62 MHz, CDCl_{3}) $\delta_{c}(\mathrm{ppm}): 159.32,137.66,130.16,128.64,128.22,127.72,127.21,126.63$, 126.25, 114.14, $55.34\left(\mathrm{~s}, \mathrm{OCH}_{3}\right)$ [3].

Data for (E)-1-nitro-4-styrylbenzene (4g)

M.p. $156-157{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.500.13 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta \mathrm{H}(\mathrm{ppm}): \delta=8.21(\mathrm{~d}, 2 \mathrm{H}), 7.13-7.64(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR (125.77 MHz, CDCl_{3}) $\delta_{c}(\mathrm{ppm}): \delta=124.60,125.71,127.30,129.30,133.74,144.26,147.17$ [1-3].

Data for (E)-1-(4-styryl-phenyl)aldehyde (5g)

M.p. $110-112{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{H}(\mathrm{ppm}): 7.13-8.04(\mathrm{~m}, 11 \mathrm{H}), 10.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{c}(\mathrm{ppm}): 192.74$ (s, CO), 138.82, 137.28, 137.16, 132.75, 130.99, 129.81, $129.28,129.23,128.60,127.64,127.54,127.14$ [1-3].

Data for (E)-1-methyl-4-styrylbenzoate (6g)

M.p. $158{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($89.60 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}}(\mathrm{ppm}): 2.58(\mathrm{~s}, 3 \mathrm{H}), 6.81-8.53(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125.77
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{c}(\mathrm{ppm}): 27.50,126.61,126.92,128.35,128.82,128.91,129.04,129.77,130.98,135.41$, 139.59, 196.99 [4].

Data for (E)-1-styrylnaphthalene (7g)

M.p. $70-71{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(89.60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}(\mathrm{ppm}): 8.31-8.37(\mathrm{br}, 1 \mathrm{H}), 7.18-8.12(\mathrm{~m}, 13 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125.77 MHz, CDCl_{3}) $\delta_{c}(\mathrm{ppm}): 116.34,123.71,123.86,125.79,125.87,125.92,126.18,126.78,127.87$, 128.13, 128.71, 128.84, 131.83 [5].

Data for Ethyl 3-phenylacrylate (8g)

Light yellow liquid. ${ }^{1} \mathrm{H}$ NMR $\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}(\mathrm{ppm})=7.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.10 \mathrm{~Hz}), 7.24-7.65(\mathrm{~m}$, $5 \mathrm{H}), 6.41(\mathrm{~d}, 1 \mathrm{H}), 4.24(\mathrm{q}, 2 \mathrm{H}), 1.23(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125.77 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{c}}(\mathrm{ppm}): 167.39(\mathrm{~s}, \mathrm{CO})$, 144.99, 134.90, 130.62, 129.29, 129.25, 128.45, 118.72, $60.91\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 14.77\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ [6].

Data for (E)-Ethyl 3-(4-nitrophenyl)acrylate (9g)
M.p. $135-136{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}(\mathrm{ppm}): 1.33\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.27\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.53(\mathrm{~s}$, $1 \mathrm{H}), 7.65(\mathrm{q}, 2 \mathrm{H}), 8.23(\mathrm{~d}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(127.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{c}(\mathrm{ppm}): 166.44(\mathrm{~s}, \mathrm{CO}), 148.92,142.03$, 141.03, 129.04, 124.61, 123.04, $61.44\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 14.70\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ [7].

Data for ethyl (E)-3-(p-tolyl)acrylate (10g)

Light brown liquid, ${ }^{1} \mathrm{H}$ NMR ($89.60 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{H}(\mathrm{ppm}): 7.66(\mathrm{~d}, 1 \mathrm{H}, J=16.21 \mathrm{~Hz}), 7.13-7.47(\mathrm{~m}$, $4 \mathrm{H}), 6.38(\mathrm{~d}, 1 \mathrm{H}, J=16.03 \mathrm{~Hz}), 4.26(\mathrm{q}, 2 \mathrm{H}, J=7.07 \mathrm{~Hz}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}, 3 \mathrm{H}, J=6.98 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100.62 MHz, CDCl_{3}) $\delta_{\mathrm{c}}(\mathrm{ppm}): 167.2(\mathrm{~s}, \mathrm{CO}), 144.5,140.6,131.7,129.6,128.0,117.1,60.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 21.4$ ($\mathrm{s}, \mathrm{CH}_{3}$), 14.3 ($\mathrm{s}, \mathrm{CH}_{3}$). [8]

Data for ethyl (E)-3-(naphthalen-1-yl)acrylate (11g)

Yellow liquid ${ }^{1} \mathrm{H}$ NMR ($89.60 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{H}(\mathrm{ppm}): 8.37(\mathrm{~d}, 1 \mathrm{H}, J=15.68 \mathrm{~Hz}), 7.17-8.07(\mathrm{~m}, 7 \mathrm{H}), 6.35$ $(\mathrm{d}, 1 \mathrm{H}, J=15.77 \mathrm{~Hz}), 4.16(\mathrm{q}, 2 \mathrm{H}, J=7.07 \mathrm{~Hz}), 1.21(\mathrm{t}, 3 \mathrm{H}, J=7.07 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{c}}$ (ppm): 165.7 (s, CO), 140.4, 132.5, 130.6, 130.2, 129.3, 127.5, 125.7, 125.0, 124.3, 123.8, 122.2, 119.7, 59.4 (s, CH2), 13.2 (s, CH3) [9].

Data for Ethyl 3-(4-formylphenyl)acrylate (12g)

Light yellow liquid. ${ }^{1} \mathrm{H}$ NMR $\left(89.60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{H}(\mathrm{ppm}): \delta=10.20(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, 1 \mathrm{H}), 7.11-7.88$ $(\mathrm{m}, 4 \mathrm{H}), 6.20(\mathrm{~d}, 1 \mathrm{H}), 4.16(2 \mathrm{H}), 1.92(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (ppm) (ppm): $\delta=191.76$ (s, CO), 166.56 (s, CO), 142.88, 133.54, 131.00, 129.64, 129.47, 129.09, 128.84, 120.11, $60.70\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 14.09$ (s, CH3) [10].

Spectra 1: IR of Y1

Spectra 2: IR of compound 1

Spectra 3: ${ }^{1} \mathrm{H}$ NMR of compound 1

Spectra 4: ${ }^{13} \mathrm{C}$ NMR of compound 1

Spectra 5: MS analysis of compound 1

Spectra 6: IR of Y2

Spectra 7: IR of compound 2

Spectra 8: ${ }^{1} \mathrm{HNMR}$ of compound 2

Spectra 9: ${ }^{13} \mathrm{C}$ NMR of compound 2

Spectra 10: MS analysis of compound 2

Spectra 11: IR of Y3

Spectra 12: IR of compound 3

Spectra 13: Far IR of compound 3

Spectra 14: ${ }^{1} \mathrm{H}$ NMR of compound 3

Spectra 15: ${ }^{13}$ C NMR of compound 3

Spectra 16: MS analysis of compound 3

Spectra 17: IR of (1g)

Spectra 18: ${ }^{1} \mathrm{H}$ NMR of (1g)

Spectra 19: ${ }^{13}$ C NMR of (1g)

Spectra 20: IR of (2g)

Spectra 22: ${ }^{13}$ C NMR of (2g)

Spectra 23: ${ }^{1} \mathrm{H}$ NMR of (3g)

Spectra 24: ${ }^{13}$ C NMR of (3g)

Spectra 25: IR of (4g)

Spectra 26: ${ }^{1} \mathrm{H}$ NMR of (4 g)

Spectra 28: IR of (5g)

Spectra 31: ${ }^{1} \mathrm{H}$ NMR of $(6 \mathrm{~g})$

Spectra 32: ${ }^{13}$ C NMR of ($6 g$)

Spectra 33: ${ }^{1} \mathrm{H}$ NMR of $(7 \mathrm{~g})$

Spectra 35: IR of (8g)

Spectra 38: IR of (9g)

Spectra 39: ${ }^{1} \mathrm{H}$ NMR of (9g)

Spectra 40: ${ }^{13}$ C NMR of (9g)

Spectra 42: ${ }^{13}$ C NMR of (10g)

Spectra 43: ${ }^{1} \mathrm{H}$ NMR of (11g)

Spectra 45: IR of (12g)

[1] R. Barik, C. V. Kumar, P. K. Das, M. V. J George, J. Org. Chem., 1985, 50, 4309-4317.
[2] Ö. Aksın, H. TÜrkmen, L. Artok, B. Cetinkaya, C. Ni, O. BÜyÜkgÜngÖr, E. Özkal, J. Organomet. Chem., 2006, 691, 3027-3036.
[3] H. Hagiwara, Y. Sugawara, K. Isobe, T. Hoshi, T. Suzuki, Org. Lett., 2004, 6, 2325-2328.
[4] E. Shirakawa, H. Otsuka, T. Hayashi, Chem. Commun. 2005, 47, 5885-5886.
[5] J. J. Heynekamp, W. M. Weber, L. A. Hunsaker, A. M. Gonzales, R. A. Orlando, L. M. Deck, D. L. Vander Jagt, J. Med. Chem. 2006, 49, 7182-7189.
[6] C. Xu, J. Gong, S. Yue, Y. Zhu, Y. Wu, Dalton Trans., 2006, 39, (4730-4739.
[7] M. Shibasaki, C. D. J. Boden, A. Kojima, Tetrahedron, 1997, 53, 7371-7395.
[8] P. R. Blakemore, D. K. H. Ho, W. M. Nap, Org. Biomol. Chem. 2005, 3, 1365-1368.
[9] S. Y. Shi, Y. H. Zhang, Synlett, 2007, 12,1843-1850.
[10] S. Gibson, D. F. Foster, G. R. Eastham, R. P. Tooze, D. J. Cole-Hamilton, Chem. Commun., 2001, 8, 779-780.

