Supporting Information

A Radical Coupling Reaction of DMSO with Sodium Arylsulfinates in Air: Mild Utilization of DMSO as C₁ Resource for the synthesis of arylsulfonyl

dibromomethane

Jie Shi,^{#[a]} Xiao-Dong Tang,^{#[b]} Yan-Cheng Wu,^[a] Jie-Fang Fang,^[a] Liang Cao,^[a] Xiao-Yun Chen,^{*[c]} and Zhao-Yang Wang^{*[a]}

[#]These authors contributed equally to this work.

[a] School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510640, China;

[b] School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China;

[c] School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China.

E-mail: wangzy@scnu.edu.cn,; Fax: (+86) 20-39310187; Tel.: (+86) 20-39310258

Table of Contents

General Information[[2]
Experimental Procedure for Compounds 3	[2]
Characterization Data for All Products 3	[2]
References[[6]
Figure S1. MS spectrum of intermediate I in Schemes 3 and 4 detected by GC-MS	[7]
Scheme S1. The reported synthetic methods of arylsulfonyl dibromomethanes[[7]
NMR Spectra for All Compounds 3	[8]

General Information

¹H and ¹³C NMR spectra were recorded on BRUKER DRX-400 spectrometer using CDCl₃ as solvent and TMS as an internal standard. Gas chromatograph mass spectra (GC-MS) were performed on a SHIMADZU model GCMS-QP5000 spectrometer. High-resolution mass spectra (ESI) were tested on a LCMS-IT-TOF mass spectrometer. Unless otherwise stated, all reagents and solvents were purchased from commercial suppliers and used without further purification. 3,4-Dibromo-5-hydroxy-2(5*H*)-furanone was synthesized according to the literature procedure.¹

Experimental Procedure for Compounds 3

The mixture of sodium arylsulfinates **1** (0.55 mmol) and 3,4-dibromo-2(5*H*)-furanone **2** (0.50 mmol) in DMSO (3 mL) was stirred at 100 $^{\circ}$ C under air for 12 h. At room temperature, the reaction mixture was diluted with H₂O (15 mL) and extracted with EtOAc (3 × 15 mL). The combined organic extracts were dried over MgSO₄. After filtration and evaporation of the solvents under reduced pressure, the crude product was purified by column chromatography on silica gel to afford desired product.

Characterization Data for All Products 3

1-(Dibromomethylsulfonyl)-4-methylbenzene (3a)

Yellow liquid (138 mg, 84%). ¹H NMR (CDCl₃, 400 MHz): δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 6.23 (s, 1H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 146.9, 131.2, 129.9, 129.1, 50.8, 21.9. IR (film), *v*, cm⁻¹: 3040, 2974, 1592, 1495, 1331, 1150, 814, 643, 544. ESI-MS, m/z (%): Calcd for C₈H₇Br₂O₂S⁻ ([M-H]⁻): 326.85 (100.0), Found: 326.96 (30.0). Anal. Calcd for C₈H₈Br₂O₂S: C 29.29, H 2.46, O 9.76, Found: C 29.17, H 2.56, O 9.67.

(Dibromomethylsulfonyl)benzene (3b)

Yellow liquid (129 mg, 82%). ¹H NMR (CDCl₃, 400 MHz): δ 7.99 (d, *J* = 8.0 Hz, 2H), 7.70 (t, *J* = 8.0 Hz, 1H), 7.59-7.53 (m, 2H), 6.18 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 135.4, 132.2, 131.2, 129.2, 50.5. IR (film), *v*, cm⁻¹: 3066, 2917, 2854, 1581, 1504, 1450, 1342, 1163, 824, 684, 556. ESI-MS, m/z (%): Calcd for C₇H₅Br₂O₂S⁻ ([M-H]⁻): 312.84 (100.0), Found: 313.09 (52.7). Anal. Calcd for C₇H₆Br₂O₂S: C 26.78, H 1.93, O 10.19, Found: C 26.87, H 1.86, O 10.26.

1-Tert-butyl-4-(dibromomethylsulfonyl)benzene (3c)

Yellow solid (148 mg, 79%). m.p. 72.9-74.5 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.97 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 6.23 (s, 1H), 1.37 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 159.72, 131.1, 129.0, 126.3, 50.8, 35.51, 31.0. IR (film), v, cm⁻¹: 3063, 2961, 2866, 1597, 1503, 1338, 1161, 832, 608, 514. ESI-MS, m/z (%): Calcd for C₁₁H₁₃Br₂O₂S⁻ ([M-H]⁻): 368.90 (100.0), Found: 368.83 (68.3). Anal. Calcd for C₁₁H₁₄Br₂O₂S: C 35.70, H 3.81, O 8.65, Found: C 35.78, H 3.93, O 8.79.

1-(Dibromomethylsulfonyl)-4-ethylbenzene (3d)

Yellow liquid (138 mg, 72%). ¹H NMR (CDCl₃, 400 MHz): δ 7.98 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 6.26 (s, 1H), 2.84-2.78 (q, *J* = 8.0 Hz, 2H), 1.32 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 152.9, 131.3, 129.2, 128.7, 50.8, 29.0, 14.9. IR (film), *v*, cm⁻¹: 3052, 2958, 2870, 1600, 1502, 1451, 1331, 1155, 825, 648, 547. ESI-MS, m/z (%): Calcd for C₉H₉Br₂O₂S⁻ ([M-H]⁻): 340.87 (100.0), Found: 340.86 (45.3). Anal. Calcd for C₉H₁₀Br₂O₂S: C 31.60, H 2.95, O 3.96, Found: C 31.78, H 2.83, O 3.89.

1-(Dibromomethylsulfonyl)-2-methylbenzene (3e)

Yellow liquid (128 mg, 78%). ¹H NMR (CDCl₃, 400 MHz): δ 7.87-7.83 (m, 2H), 7.57-7.48 (m, 2H), 6.24 (s, 1H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 139.7, 136.2, 132.0, 131.2, 129.1, 128.3, 50.7, 21.4. IR (film), *v*, cm⁻¹: 3065, 2921, 2849, 1600, 1503, 1477, 1451, 1330, 1155, 855, 682, 572. ESI-MS, m/z (%): Calcd for C₈H₈Br₂O₂S⁻ ([M-H]⁻): 326.85 (100.0), Found: 327.07 (77.2). Anal. Calcd for C₈H₈Br₂O₂S: C 29.29, H 2.46, O 9.76, Found: C 29.18, H 2.53, O 9.89.

2-(Dibromomethylsulfonyl)-1,3,5-trimethylbenzene (3f)

Yellow solid (132 mg, 74%). m.p. 115.6-117.6 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.05 (s, 2H), 6.37 (s, 1H), 2.73 (s, 6H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 144.1, 141.0, 131.6, 51.3 (C-1), 22.3, 20.1. IR (film), *v*, cm⁻¹: 3034, 2920, 2848, 1600, 1502, 1455, 1331, 1155, 803, 642, 516. ESI-MS, m/z (%): Calcd for C₁₀H₁₁Br₂O₂S⁻ ([M-H]⁻): 354.88 (100.0), Found: 355.24 (40.3). Anal. Calcd for C₁₀H₁₂Br₂O₂S: C 33.73, H 3.40, O 8.99, Found: C 33.68, H 3.53, O 8.89.

1-(Dibromomethylsulfonyl)-4-fluorobenzene (3g)

Yellow liquid (130 mg, 78%). ¹H NMR (CDCl₃, 400 MHz): δ 8.11-8.08 (m, 2H), 7.33-7.29 (m, 2H), 6.27 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 166.0 (d, *J* = 258.0 Hz), 133.3 (d, *J* = 10.0 Hz), 127.0 (d, *J* = 3.0 Hz), 115.7 (d, *J* = 23.0 Hz), 49.4. IR (film), *v*, cm⁻¹: 3102, 2920, 2853, 1583, 1493, 1455, 1339, 1244, 1155, 834, 622, 548. ESI-MS, m/z (%): Calcd for C₇H₄Br₂FO₂S⁻ ([M-H]⁻): 330.83 (100.0), Found: 331.26 (100.0). Anal. Calcd for C₇H₅Br₂FO₂S: C 25.32, H 1.52, O 9.64, Found: C 25.48, H 1.43, O 9.79.

1-Chloro-4-(dibromomethylsulfonyl)benzene (3h)

Yellow solid (133 mg, 76%). m.p. 127.8-129.2 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.54 (d, *J* = 8.0 Hz, 2H), 6.19 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 142.6, 132.6, 130.5, 129.6, 50.2. IR (film), *v*, cm⁻¹: 3091, 2959, 2858, 1579, 1507, 1457, 1339, 1187, 826, 710, 649, 556. ESI-MS, m/z (%): Calcd for C₇H₄Br₂ClO₂S⁻ ([M-H]⁻): 346.80 (100.0), Found: 346.98 (100.0). Anal. Calcd for C₇H₅Br₂ClO₂S:

1-Bromo-4-(dibromomethylsulfonyl)benzene (3i)

White solid (142 mg, 72%). m.p. 130.1-131.3 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.91 (d, *J* = 8.0 Hz, 2H), 7.77 (d, *J* = 8.0 Hz, 2H), 6.25 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 132.62, 132.61, 131.3, 131.0, 50.2. IR (film), *v*, cm⁻¹: 3095, 2916, 2849, 1574, 1502, 1451, 1339, 1155, 826, 635, 579. ESI-MS, m/z (%): Calcd for C₇H₄Br₃O₂S⁻ ([M-H]⁻): 392.74 (100.0), Found: 393.15 (98.7). Anal. Calcd for C₇H₅Br₃O₂S: C 21.40, H 1.28, O 8.14, Found: C 21.48, H 1.43, O 8.29.

1-(Dibromomethylsulfonyl)-4-iodobenzene (3j)

Yellow solid (152 mg, 69%). m.p. 124.8-126.3 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.00 (d, *J* = 8.0 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 2H), 6.23 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 138.6, 132.3, 131.8, 104.3, 50.1. IR (film), *v*, cm⁻¹: 3086, 2920, 2844, 1571, 1455, 1339, 1155, 821, 636, 579, 527. ESI-MS, m/z (%): Calcd for C₇H₄Br₂IO₂S⁻ ([M-H]⁻): 438.73 (100.0), Found: 439.11 (67.7). Anal. Calcd for C₇H₅Br₂IO₂S: C 19.11, H 1.15, O 7.29, Found: C 19.28, H 1.23, O 7.17.

1-(Dibromomethylsulfonyl)-3-fluorobenzene (3k)

Yellow liquid (118 mg, 71%). ¹H NMR (CDCl₃, 400 MHz): δ 7.86 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.66-7.60 (m, 1H), 7.50-7.46 (m, 1H), 6.26 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 162.2 (d, J = 252.0 Hz), 134.1 (d, J = 7.0 Hz), 131.0 (d, J = 8.0 Hz), 127.1 (d, J = 4.0 Hz), 122.8 (d, J = 21.0 Hz), 118.5 (d, J = 24.0 Hz), 50.0 IR (film), v, cm⁻¹: 3077, 2985, 2853, 1601, 1498, 1440, 1339, 1224, 1154, 801, 673, 547. ESI-MS, m/z (%): Calcd for C₇H₅Br₂FO₂S⁻ ([M-H]⁻): 330.83 (100.0), Found: 331.09 (100.0). Anal. Calcd for C₇H₅Br₂FO₂S: C 25.32, H 1.52, O 9.64, Found: C 25.38, H 1.34, O 9.79.

1-(Dibromomethylsulfonyl)-4-methoxybenzene (3l)

Gray solid (154 mg, 90%). m.p. 90.0-91.3 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.90 (d, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 8.0 Hz, 2H), 6.16 (s, 1H), 3.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 165.2, 133.5, 123.0, 114.5, 55.9, 51.1. IR (film), *v*, cm⁻¹: 3086, 2980, 2840, 1587, 1498, 1457, 1339, 1264, 1155, 821, 651, 555. ESI-MS, m/z (%): Calcd for C₈H₇Br₂O₃S⁻ ([M-H]⁻): 342.85 (100.0), Found: 343.05 (30.7). Anal. Calcd for C₈H₈Br₂O₃S: C 27.93, H 2.34, O 13.95, Found: C 27.98, H 2.45, O 13.89.

2-(Dibromomethylsulfonyl)naphthalene (3m)

Yellow solid (153 mg, 84%). m.p. 126.9-128.7 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.65 (s, 1H), 8.05-7.96 (m, 4H), 7.76-7.66 (m, 2H), 6.33 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 136.1, 133.8, 131.9, 130.3, 129.7, 129.4, 129.1, 128.1, 128.0, 124.8, 50.8. IR (film), ν , cm⁻¹: 3053, 2981, 1592, 1507, 1453, 1331, 1155, 813, 753, 653, 549. ESI-MS, m/z (%): Calcd for C₁₁H₇Br₂O₃S⁻ ([M-H]⁻): 362.85 (100.0), Found: 362.59 (65.7). Anal. Calcd for C₁₁H₈Br₂O₂S: C 36.29, H 2.21, O 8.79, Found: C 36.18, H 2.33, O 8.89.

2-(Dibromomethylsulfonyl)thiophene (3n)

Gray solid (168 mg, 77%). m.p. 120.9-122.8 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.88-7.83 (m, 2H), 7.21-7.18 (m, 1H), 6.27 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 139.0, 137.4, 131.4, 128.2, 51.0. IR (film), ν , cm⁻¹: 3095, 2923, 1503, 1457, 1339, 1155, 744, 627, 577. ESI-MS, m/z (%): Calcd for C₅H₃Br₂O₂S₂⁻ ([M-H]⁻): 318.79 (100.0), Found: 319.36 (64.7). Anal. Calcd for C₅H₄Br₂O₂S₂: C 18.77, H 1.26, O 10.00, Found: C 18.88, H 1.37, O 10.26.

References

1. (a) Y.-H. Tan, J.-X. Li, F.-L. Xue, J. Qi, Z.-Y. Wang, Tetrahedron 2012, 68. 2827. (b) F.-L. Xue, J.-X.

Li, Z.-Y. Wang, J.-F. Xiong. *Res. Chem. Intermed.* **2013**, *39*, 1153. (c) J.-P. Huo, P. Peng, G.-H. Deng, W. Wu, J.-F. Xiong, M.-L. Zhong, Z.-Y. Wang, *Macromol. Rapid Commun.* **2013**, *34*, 1779. (d) J.-P. Huo, J.-C. Luo, W. Wu, J.-F. Xiong, G.-Z. Mo, Z.-Y. Wang, *Ind. Eng. Chem. Res.* **2013**, *52*, 11850.

Figure S1. MS spectrum of intermediate I in Schemes 3 and 4 detected by GC-MS

Scheme S1. The reported synthetic methods of arylsulfonyl dibromomethanes

NMR Spectra for All Compounds 3

