Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

for

A novel sensor based on bifunctional monomers molecularly imprinted film at graphene modified glassy carbon electrode for detecting trace of moxifloxacin

Zhiming Jiang, Guangyu Li, Mingxiao Zhang*

School of Chemistry and Chemical Engineering, Southwest University, Chong Qing 400715, PR China

E-mail: <u>pclab@swu.edu.cn</u>

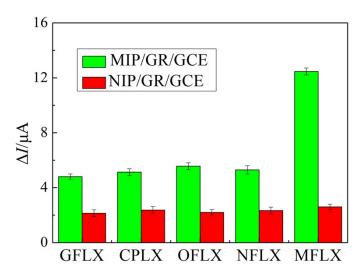


Fig. S1. Selective recognition of the MIP/GR/GCE and NIP/GR/GCE for moxifloxacin and its analogues after incubation for 10 min. The concentration of MFLX, NFLX, OFLX, CPLX, and GFLX was 4.0×10^{-9} M.

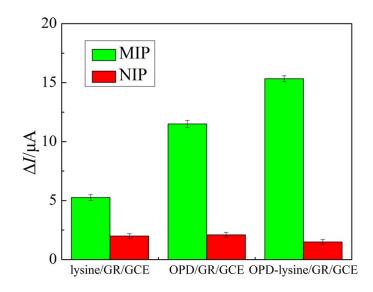


Fig. S2 ΔI of the sensors prepared using OPD, L-lysine, and OPD-lysine as polymerized monomer.

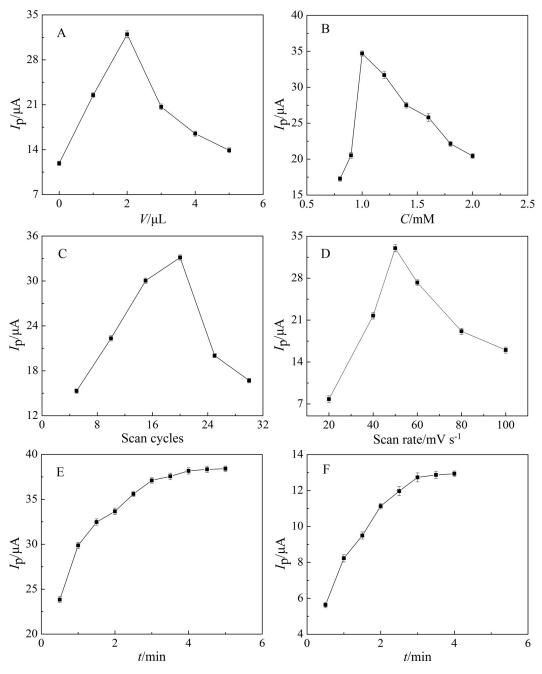


Fig. S3 Optimization of conditions for the preparation of MIP/GR/GCE. (A) the volume of graphene suspension; (B) the concentration of OPD and L-lysine; (C) scan cycles; (D) scan rates; (E) the elution curve of MIP/GR/GCE; (F) the elution curve of MIP/GCE.

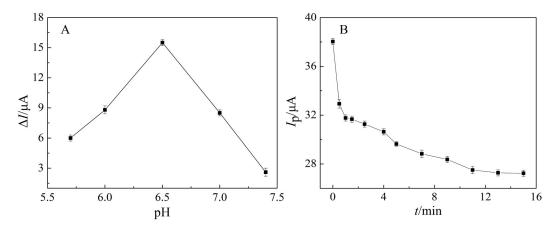


Fig. S4 (A) The pH effect of rebinding solution for MIP/GR/GCE; (B) the influence of incubation time on the response of the sensor.

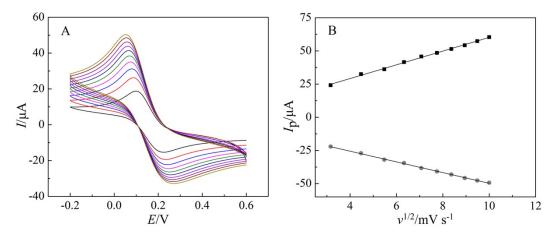


Fig. S5 (A) CV curves of MIP/GR/GCE at different scan rates (from inner to outer): 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mV s⁻¹ in the 2.0 mM $[Fe(CN)_6]^{3-/4-}$ containing 0.10 M KCl. (B) The relationship between the scan rate (*v*) and anodic (I_{pa}), cathodic (I_{pc}).

published electrochemical methods for the detection of moximoxacm.					
Electrode	Linear range (M)	Detection limit (M)	Reference		
GCE	$5.0 \times 10^{-6} - 1.5 \times 10^{-5}$	4.37×10^{-7}	13		
DNA/GCE	$2.0 \times 10^{-7} - 1.4 \times 10^{-6}$	8.0×10 ⁻⁸	18		
PVC ^a membrane	$4.0 \times 10^{-6} - 1.0 \times 10^{-2}$	3.0×10 ⁻⁶	17		
MIP/CPE ^b	$3.1 \times 10^{-6} - 2.0 \times 10^{-4}$	5.9×10 ⁻⁸	16		
MIP/GR/GCE	$1.0 \times 10^{-9} - 5.0 \times 10^{-5}$	5.12×10 ⁻¹⁰	This work		

Table S1 Comparison of the performance of our proposed MIP/GR/GCE electrode with other published electrochemical methods for the detection of moxifloxacin.

^a PVC: Polyvinyl chloride.

^b CPE: carbon paste electrode.

Substrate	$(\Delta I/I_0)_{\mathrm{MIP}}$ (%)	$(\Delta I/I_0)_{\rm NIP}$ (%)	α	β	
MFLX	37.4	18.8	2.0	1.0	
NFLX	14.1	20.2	0.70	2.8	
OFLX	13.8	18.5	0.74	2.7	
CPLX	12.9	19.2	0.67	3.0	
GFLX	13.3	18.6	0.71	2.8	

Table S2 Selectivity of MIP/GR/GCE sensor for 4.0×10^{-9} M MFLX and interferents.