Electronic Supplementary Information

Construction of 2D interwoven and 3D metal-organic frameworks (MOFs) of Cd(II): effect of ancillary ligands on the structure and the catalytic performance for Knoevenagel reaction

Bharat Ugale and C. M. Nagaraja*

Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India. *Tel: 91- 1881-242229. Email: cmnraja@iitrpr.ac.in:*

Contents:

- Fig.S1. PXRD patterns of compound 1. (a) Simulated from X-ray single crystaldata;
 (b) bulk as-synthesized compound.
- Fig.S2. PXRD patterns of compound 2. (a) Simulated from X-ray single crystal data
 (b) bulk as-synthesized compound.
- Fig.S3. PXRD patterns of compound 3. (a) Simulated from X-ray single crystal data
 (b) bulk as-synthesized compound.
- 4. Table S1. Selected bond lengths (Å) and angles (°) for compound 1.
- 5. Table S2. Selected bond lengths (Å) and angles (°) for compound **2**.
- 6. Table S3. Selected bond lengths (Å) and angles (°) for compound **3**.
- 7. Table S4. Selected hydrogen bonding geometry (Å,°)for compound 1.
- 8. Table S5. Selected hydrogen bonding geometry (Å,°)for compound 2.
- 9. Table S6. Selected hydrogen bonding geometry (Å,°) for compound **3**.
- 10. Fig.S4. PXRD patterns of compound 3(a) simulated PXRD pattern from single crystal x-ray diffraction data. (b) for as-synthesized sample (c) sample obtained after first

catalytic cycle (d) sample obtained after second catalytic cycle (e) for sample obtained after third catalytic cycle.

- 11. Fig.S5 Reaction of benzaldehyde and malononitrile carried out in different solvents.
- 12. Fig.S6 Room temperature UV-Visible spectra of free muconic acid and compounds 1-3 dispersed in DMF.
- 13. GC-MS data

Fig. S1 PXRD patterns of compound **1**. (a) Simulated from X-ray single crystal data; (b) bulk as-synthesized compound.

Fig S2 PXRD patterns of compound **2**. (a) Simulated from X-ray single crystal data; (b) bulk as-synthesized compound.

Fig. S3 PXRD patterns of compound **3**. (a) Simulated from X-ray single crystal data; (b) bulk as-synthesized compound.

Cd1-O1	2.308(2)	O2-Cd1-O4	140.81(7)
Cd1-O2	2.483(2)	O2-Cd1-N1	83.03(8)
Cd1-O3	2.562(2)	O2-Cd1-N2	97.97(8)
Cd1-O4	2.335(2)	O2-Cd1-N3	86.12(8)
Cd1-N1	2.376(2)	O3-Cd1-O4	53.59(7)
Cd1-N2	2.337(2)	O3-Cd1-N1	81.99(8)
Cd1-N3	2.345(2)	O3-Cd1-N2	89.06(7)
O1-Cd1-O2	54.66(7)	O3-Cd1-N3	85.63(7)
O1-Cd1-O3	140.53(7)	O4-Cd1-N1	135.57(8)
O1-Cd1-O4	86.99(7)	O4-Cd1-N2	93.45(8)
O1-Cd1-N1	137.43(8)	O4-Cd1-N3	86.53(8)
O1-Cd1-N2	96.05(8)	N1-Cd1-N2	84.26(8)
O1-Cd1-N3	90.53(8)	N1-Cd1-N3	91.14(8)
O2-Cd1-O3	162.72(7)	N2-Cd1-N3	173.41(8)

Table S1. Selected bond lengths (Å) and angles (°) for compound 1.

Cd1-O1	2.337(3)	O2-Cd1-N3	82.81(12)
Cd1-O2	2.519(4)	O2-Cd1-O3 ⁱ	160.91(11)
Cd1-N1	2.355(4)	O2-Cd1-O4 ⁱ	138.57(10)
Cd1-N3	2.317(4)	O2-Cd1-N2 ⁱⁱ	105.15(12)
Cd1-O3 ⁱ	2.540(3)	N1-Cd1-N3	94.28(13)
Cd1-O4 ⁱ	2.398(3)	O3 ⁱ -Cd1-N1	84.35(12)
Cd1-N2 ⁱⁱ	2.328(4)	O4 ⁱ -Cd1-N1	136.99(13)
O1-Cd1-O2	53.79(11)	N1-Cd1-N2 ⁱⁱ	88.34(13)
O1-Cd1-N1	135.13(13)	O3 ⁱ -Cd1-N3	83.32(12)
O1-Cd1-N3	93.79(12)	O4 ⁱ -Cd1-N3	85.85(12)
O1-Cd1-O3 ⁱ	140.46(11)	N2 ⁱⁱ -Cd1-N3	171.87(14)
O1-Cd1-O4 ⁱ	87.59(11)	O3 ⁱ -Cd1-O4 ⁱ	52.88(11)
O1-Cd1-N2 ⁱⁱ	89.75(12)	O3 ⁱ -Cd1-N2 ⁱⁱ	89.29(12)
O2-Cd1-N1	83.67(12)	O4 ⁱ -Cd1-N2 ⁱⁱ	89.99(12)

 Table S2 Selected bond lengths (Å) and angles (°) for compound 2.

Symmetry codes: (i) 1/2-x,1/2-y,-1/2+z; (ii) x,-y,1/2+z;

Cd1-O1	2.436(6)	O1w-Cd1-N1	84.86(9)
Cd1-O1w	2.331(6)	O1 ⁱ -Cd1-O1w	84.75(9)
Cd1-O2	2.402(5)	O1w-Cd1-O2 ⁱ	135.27(13)
Cd1-N1	2.365(6)	O1w-Cd1-N1 ⁱ	84.86(14)
Cd1-O1 ⁱ	2.436(6)	O2-Cd1-N1	101.70(19)
Cd1-O2 ⁱ	2.402(5)	O1 ⁱ -Cd1-O2	136.48(15)
Cd1-N1 ⁱ	2.365(6)	O2-Cd1-O2 ⁱ	89.45(18)
O1-Cd1-O1w	84.75(9)	O2-Cd1-N1 ⁱ	85.7(2)
O1-Cd1-O2	53.49(15)	Ol ⁱ -Cdl-Nl	97.60(2)
O1-Cd1-N1	81.4(2)	O2 ⁱ -Cd1-N1	85.7(2)
O1-Cd1-O1 ⁱ	169.49(13)	N1-Cd1-N1 ⁱ	169.70(2)
O1-Cd1-O2 ⁱ	136.48(15)	O1 ⁱ -Cd1-O2 ⁱ	53.49(15)
O1-Cd1-N1 ⁱ	97.60(2)	O1 ⁱ -Cd1-N1 ⁱ	81.4(2)
O1w-Cd1-O2	135.27(13)	O2 ⁱ -Cd1-N1 ⁱ	101.70(19)

Table S3. Selected bond lengths (Å) and angles (°) for compound 3.

Symmetry codes: (i) -x,y,1/2-z;

 Table S4. Selected hydrogen bonding geometry (Å,°) for compound 1

D–H···A	D…H	Н…А	D····A	D–H···A
С10Н10 О4	0.9300	2.4600	3.381(4)	173.00 ⁱ
С13Н13 О2	0.9300	2.4000	3.087(4)	131.00
O2w—H4A O1	0.9300	2.4000	3.085(4)	131.00

Symmetry codes: (i) 1/2-x,-1/2+y,z;

Table S5. Selected hydrogen bonding geometry $(\text{\AA}, ^{\circ})$ for compound 2

D–H···A	D…H	Н…А	D…A	D−H···A
С7Н7 ОЗ	0.9300	2.4500	3.137(6)	131.00 ⁱ
С11Н11 О2	0.9300	2.5500	3.193(6)	127.00

Symmetry codes: (i) 1/2-x,1/2-y,-1/2+z;

Table S6. Selected hydrogen bonding geometry (Å,°) for compound 3

D−H···A	D…H	Н…А	D…A	D–H···A
O1wH1w1 O1	0.9300	2.0600	2.698(5)	125.00 ⁱ
O1wH1w2 O1	0.9300	2.0600	3.698(5)	125.00 ⁱⁱ
C4H1 O2	0.9300	2.5400	3.202(9)	128.00 ⁱⁱⁱ
C8H2 O1	0.9300	2.4000	3.243(9)	151.00 ⁱ
С5Н5 О2	0.9300	2.5100	3.176(9)	128.00 ^{iv}

Symmetry codes: (i) -x,1-y,-z; (ii) x,1-y,1/2+z; (iii) -x,y,1/2-z; (iv) -1/2+x,1/2-y,-1/2+z;

Fig. S4 Room temperature UV-Visible spectra of free muconic acid and compounds 1-3 dispersed in DMF.

Fig. S5. PXRD patterns of compound **3**(a) simulated PXRD pattern from single crystal x-ray diffraction data. (b) for as-synthesized sample (c) sample obtained after first catalytic cycle (d) sample obtained after second catalytic cycle (e) for sample obtained after third catalytic cycle.

GC-MS DATA

1. <u>Compound 1 used as catalyst (benzaldehyde with malononitrile)</u>

(i)GC data

2. <u>Compound 2 used as catalyst (benzaldehyde with malononitrile)</u>

(i)GC data

3. <u>Compound 3 used as catalyst with different substrates shown below</u>

1. Benzaldehyde

(i)GC data

2. <u>4-Nitro benzaldehyde</u>

(i)GC data

3. <u>4-Chloro benzaldehyde</u>

(i)GC data

4. <u>4-Methoxy benzaldehyde</u>

(i)GC data

5. <u>4-Methyl benzaldehyde</u>

(i)GC data

6. Benzaldehyde with Ethyl-2-cyanoacetate

(i)GC data

7. <u>4-Nitro benzaldehyde with Ethyl-2-cyanoacetate</u>

(i)GC data

8. <u>4-Chloro benzaldehyde with Ethyl-2-cyanoacetate</u>

(i)GC data

9. <u>Blank reaction without catalyst (benzaldehyde with malononitrile)</u>

(i)GC data

(ii) MS data

a. <u>Reactant</u>

b. Product

