Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information for

Ni-doped rutile TiO₂ nanoflowers: Low-temperature solution synthesis and the enhanced photocatalytic efficiency

Lu-Lu Lai, and Jin-Ming Wu*

State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310037, P. R. China

Figure S1. XRD pattern of the as-synthesized titanate nanowires

Figure S2. Low (a) and (b) high magnification FESEM images of the as-synthesized titanate nanowires.

Figure S3. Low (a) and (b) high magnification FESEM images of titanate nanowires after immersing at 80 °C for 72 h in $0.05 \text{ M} \text{ H}_2\text{SO}_4$ solution.

Figure S4. FESEM images of titanate nanowires after immersing at 80 °C for 72 h in 0.05 M H_2SO_4 solutions containing $NiSO_4 \cdot 6H_2O$ with various concentrations of (a, b) 0.5 mM, (c, d) 2 mM, and (e, f) 4 mM.

Figure S5. XRD patterns of titanate nanowires after immersing at 80 °C for 72 h in 0.05 M H_2SO_4 solutions containing NiSO₄·6H₂O with various concentrations of (a) 0 mM, (b) 0.1 mM, (c) 0.5 mM, (d) 1 mM, (e) 2 mM and (f) 4 mM.

Figure S6. Optical photographs of the slurry system of P25 (left) and Ni-doped TiO_2 nanoflowers (right) after sediment for 1 min (a) and 24 h (b).

Figure S7. Ni/Ti atomic ratio derived from the SEM-EDS analysis as a function of the concentration of $NiSO_4 \cdot 6H_2O$ in the H_2SO_4 solution.

Figure S8. Photodegradation curves of rhodamine B in the presence of Ni-doped rutile nanoflowers and P25 under UV + Vis light illumination. Initial RhB concentration: 0.1 mM (50 ppm); catalyst load: 0.2 g·L⁻¹.