Electronic Supporting Information for

Effects of zinc and manganese ions in aqueous electrolytes on structure and electrochemical performance of Na_{0.44}MnO₂ cathode material

Shouli Bai,^a Jingli Song,^{a,b} Yuehua Wen,^{*b} Jie Cheng,^b Gaoping Cao,^b Yusheng Yang^{a,b} and Dianqing Li *a

^a State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology ,Beijing,China,100029

^bResearch Institute of Chemical Defence, Beijing, China, 100191

Figure S1 XRD patterns of the $Na_{0.44}MnO_2$ electrode at the original state (a) and at the discharge state after 20 cycles(b) at the current density of 100mA/g in 1 M Na_2SO_4 + 0.5M ZnSO₄ mixed aqueous electrolytes.

The XRD pattern of the $Na_{0.44}MnO_2$ electrode after 20 cycles at the current density of 100mA/g in 1 M $Na_2SO_4 + 0.5M$ ZnSO₄ mixed aqueous electrolytes was shown in the Figure S1. As can be seen, some characteristic diffraction peaks of $Na_{0.44}MnO_2$ are evidently weakened, indicative of a great change in the crystal structure of $Na_{0.44}MnO_2$.