Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Electronic structure, low-temperature transport and thermodynamic properties of polymorphic β -As₂Te₃

J.-B. Vaney¹, J.-C. Crivello², C. Morin², G. Delaizir³, J. Carreaud³, A. Piarristeguy⁴, J. Monnier², E. Alleno², A. Pradel⁴, E. B. Lopes⁵, A. P. Gonçalves⁵, A. Dauscher¹, C. Candolfi¹, and B. Lenoir^{*1}

¹Institut Jean Lamour, UMR 7198 CNRS – Université de Lorraine, Nancy, France ²Institut de Chimie et des Matériaux Paris Est (ICMPE), UMR 7182

 CNRS-Université Paris-Est Créteil, Thiais, France
 ³Science des Procédés Céramiques et de Traitements de Surface (SPCTS), UMR CNRS 7315-Université de Limoges, France
 ⁴Institut Charles Gerhardt (ICG), UMR 5253 CNRS-Université de

Montpellier, France

⁵C2TN, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

 $^{\ ^*} Corresponding \ author: \ bertrand.lenoir@univ-lorraine.fr$

Contents

1	Rie	tveld r	$ {\bf efinements \ of \ the \ PXRD \ pattern \ of \ } \beta{-}{\bf As}_{2}{\bf Te}_{3} $	3					
2	DF	Γ resu	lts on As ₂ Te ₃ : α , β , β' phases	4					
	2.1	Crystal structures							
		2.1.1	Summary of the studied phases	4					
		2.1.2	α -As ₂ Te ₃ phase, $C2/m(12)$	4					
		2.1.3	β -As ₂ Te ₃ phase, $R\bar{3}m(166)$	5					
		2.1.4	β' -As ₂ Te ₃ phase, $C2/m(12)$	5					
		2.1.5	$\beta' - As_2 Te_3$ phase, $P2_1/m(11)$	6					
	2.2	Electr	onic structures	$\overline{7}$					
		2.2.1	α -As ₂ Te ₃ phase, $C2/m(12)$	$\overline{7}$					
		2.2.2	β -As ₂ Te ₃ phase, $R\bar{3}m(166)$	9					
		2.2.3	$\beta' - As_2 Te_3$ phase, $C2/m(12)$	10					
		2.2.4	$\beta' - As_2 Te_3$ phase, $P2_1/m(11)$	11					
	2.3	tional properties	14						
		2.3.1	Pure element: As $-A7$, $R\bar{3}m$ (166), primitive cell: 2 atoms	14					
		2.3.2	Pure element: Te $-A8$, $P3_121$ (152), 3 atoms	14					
		2.3.3	α -As ₂ Te ₃ phase, $C2/m(12)$	15					
		2.3.4	β -As ₂ Te ₃ phase, $R\bar{3}m(166)$	16					
		2.3.5	β' -As ₂ Te ₃ phase, $C2/m(12)$	17					
		2.3.6	$\beta' - As_2 Te_3$ phase, $P2_1/m(11)$	18					
	2.4	Band	gap as a function of an isotropic stress	19					

1 Rietveld refinements of the PXRD pattern of β -As₂Te₃

Figure S1: Experimental PXRD pattern of β -As₂Te₃ and its Rietveld analysis. The red open circles are the experimental data, the black line is the calculated pattern, the bottom blue line is the difference between the experimental and calculated pattern and the green vertical ticks stand for the Bragg reflections of β -As₂Te₃.

2 DFT results on As₂Te₃: α , β , β' phases

2.1 Crystal structures

2.1.1 Summary of the studied phases

	α	eta	eta^\prime	eta^{\prime}
	C2/m (12)	$R\bar{3}m$ (166)	C2/m (12)	$P2_1/m$ (11)
a (Å)	14.962	4.102	7.088	7.087
b/a	0.272	1	0.577	2.309
c/a	1.152	7.173	1.476	1.478
eta	95.576	hex	103.044	103.016
volume $(Å^3/at)$	30.701	28.893	29.560	29.592

The following crystal structures are given in the POSCAR format, as an input file for VASP code (see: http://cms.mpi.univie.ac.at/vasp/guide/node59.html).

2.1.2 α -As₂Te₃ phase, C2/m(12)

97 0.00000000000 00 4.070715135735 47 0.000000000000	0000 -1.4546505915510886 9228 0.00000000000000 0000 10.1295988835578967	
0 0000000000000000000000000000000000000	0 2877346020687099 # Te1 (4i)
0.0000000000000000000000000000000000000	0 7122653979314180	Τ Τ)
0.0000000000000000000000000000000000000	0.6642957363094482	
0.000000000000000000	0.3357042636906158	
0.50000000000000000	0.3357042636906158 # Te2 (4i)
0.5000000000000000	0.9691725449397950	
0.50000000000000000	0.0308274550601411	
0.50000000000000000	0.7122653979314180	
0.00000000000000000	0.0308274550601411 # Te3 (4i)
0.5000000000000000	0.2877346020687099	
0.5000000000000000	0.6642957363094482	
0.0000000000000000000000000000000000000	0.9691725449397950	
0.5000000000000000	0.4396573642955062 # As1 (4i)
0.5000000000000000	0.5603426357044299	
0.00000000000000000	0.8590069449202105	
0.0000000000000000000000000000000000000	0.5603426357044299	
0.0000000000000000000000000000000000000	0.1409930550798109 # As2 (4i)
0.0000000000000000000000000000000000000	0.4396573642955062	
0.5000000000000000	0.8590069449202105	
0.5000000000000000	0.1409930550798109	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97 0.00000000000000000000000000000000000

2.1.3 β -As₂Te₃ phase, $R\bar{3}m(166)$

```
beta R-3m (166) - hexagonal description
    1.00000000000000
    4.1017556079257629
                        -0.00000000000127
                                            -0.00000000000000000
   -2.0508778039629871
                         3.5522245565756223
                                            -0.0000000000000001
    0.00000000000012
                                            29.7451589947873316
  Те
       As
    9
          6
Direct
 0.00000000000000000
                                      0.2176841539434236 # Te1 (6c)
 0.66666666666643
                    0.3333333333333357
                                      0.1156491793899264
 0.3333333333333357
                    0.66666666666643
                                      0.8843508206099742
 0.3333333333333357
                    0.66666666666643
                                      0.4489825127232407
 0.00000000000000000
                    0.00000000000000000
                                      0.7823158460566901
 0.66666666666643
                    0.3333333333333357
                                      0.5510174872766456
 0.00000000000000 # Te2 (3a)
 0.33333333333333357
                    0.66666666666643
                                      0.666666666666643
 0.66666666666643
                    0.3333333333333357
                                      0.33333333333333357
 0.66666666666643
                    0.3333333333333357
                                      0.9379151253680860 # As (6c)
 0.33333333333333357
                    0.66666666666643
                                      0.0620848746319069
 0.33333333333333357
                    0.66666666666643
                                      0.2712484587013932
 0.00000000000000000
                    0.00000000000000000
                                      0.3954182079652711
 0.000000000000000
                    0.6045817920347503
 0.66666666666643
                    0.3333333333333357
                                      0.7287515412985854
```

2.1.4 $\beta' - As_2 Te_3$ phase, C2/m(12)

```
Beta-prime C2/m (12)
   1.00000000000000
    6.9046540434222221
                        0.00000000000000000
                                            -1.5996322569318127
    4.0917922360543972
                                            0.00000000000000000
   -0.0000156673416340
                        0.000000000000000
                                            10.4627509324877295
  Te
       As
    6
          4
Direct
  0.00000000000000 # Te1 (2a)
  0.5000000000000000
                    0.5000000000000000
                                      0.00000000000000000
  0.2204183099257193
                                      0.6610508751331210 # Te2 (4i)
  0.7795816900742807
                    0.3389491248668790
  0.7204183099257193
                    0.5000000000000000
                                      0.6610508751331210
  0.2795816900742807
                    0.5000000000000000
                                      0.3389491248668790
                    0.5000000000000000
  0.8940851239894982
                                      0.1823290164472340 # As (4i)
  0.1059148760105018
                    0.5000000000000000
                                      0.8176709835527660
  0.3940851239894982
                    0.0000000000000000
                                      0.1823290164472340
  0.6059148760105018
                    0.00000000000000000
                                      0.8176709835527660
```

2.1.5 $\beta' - As_2 Te_3$ phase, $P2_1/m(11)$

Beta-prime-bis P2_1/m	1 (1	.1)					
1.0							
6.90455180247774	80	0.000000000000	0000	-1.597074048	587	71309)
0.000000000000000	00	16.365575139869	7511	0.000000000	000	00000)
0.000000000000000	00	0.000000000000	0000	10.4751313887	732	24446	5
24 16							
Direct							
0.0000000000000000	0.	000000000000000000000000000000000000000	0.000	000000000000000000000000000000000000000	#	Te1	(2a)
0.0000000000000000	0.	500000000000000000000000000000000000000	0.000	0000000000000000000			
0.000013036320369	0.	2500000000000000	0.000	0012660758330	#	Te2	(2e)
0.9999986963679631	0.	7500000000000000	0.9999	9987339241670			
0.5000009464446676	0.	1249999942479898	0.000	0004059690083	#	Te3	(4f)
0.4999990535553324	0.	8750000057520102	0.9999	9995940309917			
0.4999990535553324	0.	6249999942479898	0.9999	9995940309917			
0.5000009464446676	0.	3750000057520103	0.000	0004059690083			
0.2205914831849745	0.	000000151540891	0.6614	4859450879841	#	Te4	(4f)
0.7794085168150255	0.	9999999848459109	0.338	5140549120159			
0.7794085168150255	0.	500000151540891	0.338	5140549120159			
0.2205914831849745	0.	4999999848459109	0.6614	4859450879841			
0.2205932961392882	0.	2500000000000000	0.6614	4857889388425	#	Te5	(2e)
0.7794067038607118	0.	7500000000000000	0.338	5142110611575			
0.2205896412270864	0.	7500000000000000	0.6614	4858772079598	#	Te6	(2e)
0.7794103587729135	0.	2500000000000000	0.338	5141227920402			
0.7205926019527990	0.	1249998811078998	0.6614	4859142170191	#	Te7	(4f)
0.2794073980472010	0.	8750001188921002	0.338	5140857829809			
0.2794073980472010	0.	6249998811078998	0.338	5140857829809			
0.7205926019527990	0.	3750001188921002	0.6614	4859142170191			
0.7205903500590526	0.	6250000715243422	0.6614	4858650711092	#	Te8	(4f)
0.2794096499409474	0.	3749999284756577	0.338	5141349288908			
0.2794096499409474	0.	1250000715243423	0.338	5141349288908			
0.7205903500590526	0.	8749999284756578	0.6614	4858650711092			
0.3939978591268419	0.	2500000000000000	0.182	1117369113082	#	As1	(2a)
0.6060021408731581	0.	7500000000000000	0.8178	3882630886919			
0.3939948955795695	0.	7500000000000000	0.182	1121029395504	#	As2	(2e)
0.6060051044204304	0.	2500000000000000	0.8178	8878970604496			
0.3939965854323068	0.	4999996220338493	0.182	1113836346699	#	As3	(4f)
0.6060034145676931	0.	5000003779661506	0.8178	8886163653301			
0.6060034145676931	0.	9999996220338494	0.8178	8886163653301			
0.3939965854323068	0.	0000003779661507	0.182	1113836346699			
0.1060047195806245	0.	1249993893488116	0.8178	8873164696396	#	As4	(4f)
0.8939952804193755	0.	8750006106511885	0.182	1126835303604			
0.8939952804193755	0.	6249993893488115	0.182	1126835303604			
0.1060047195806245	0.	3750006106511884	0.8178	3873164696396			
0.1060023179201455	0.	6250006367550300	0.8178	8893759312342	#	As5	(4f)
0.8939976820798545	0.	3749993632449700	0.182	1106240687658			
0.8939976820798545	0.	1250006367550300	0.182	1106240687658			
0.1060023179201455	0.	8749993632449700	0.8178	8893759312342			

2.2 Electronic structures

Reading help

For each structure, the total DOS are presented on top of each phase-section, followed by the partial contribution on each inequivalent site: Te on left, As on right.

The total DOS is represented (red line, left scale) with the number of valence electrons (dashed green line, right scale). Values are given for the primitive cell formula: 20, 15, 10 and 40 atoms for α , β , $\beta' - C2/m$, and $\beta' - P2_1/m$, respectively.

The partial DOS presents the contribution on each orbital: s electrons (l = 0) is in blue, $p \ (l = 1)$ in green and $d \ (l = 2)$ in red.

The Fermi level is shifted to the origin of energy.

2.2.1 α -As₂Te₃ phase, C2/m(12)

Figure S2: Total DOS of α -As₂Te₃ phase.

Figure S3: Partial DOS of α -As₂Te₃ phase.

2.2.2 β -As₂Te₃ phase, $R\bar{3}m(166)$

Figure S4: Total DOS of β -As₂Te₃ phase.

Figure S5: Partial DOS of β -As₂Te₃ phase.

2.2.3 $\beta' - As_2 Te_3$ phase, C2/m(12)

Figure S6: Total DOS of β' -As₂Te₃ phase, C2/m(12).

Figure S7: Partial DOS of β' -As₂Te₃ phase, C2/m(12).

2.2.4 $\beta' - As_2 Te_3$ phase, $P2_1/m(11)$

Figure S8: Total DOS of β' -As₂Te₃ phase, $P2_1/m(11)$.

Figure S9: Partial DOS of β' -As₂Te₃ phase, $P2_1/m(11)$.

2.3 Vibrational properties

The following results has been obtained by phonon calculations in the harmonic approximation. The phonon bands dispersion curves (left column) and integrated partial DOS of atoms in equivalent site (right column) are shown. Thermodynamic properties are given in primitive cell formula: 20, 15, 10 and 40 atoms for α , β , $\beta' - C2/m$, and $\beta' - P2_1/m$, respectively.

Frequency units are in THz $(1 \text{ THz} = 33.356 \text{ cm}^{-1})$.

2.3.1 Pure element: As-A7, $R\bar{3}m$ (166), primitive cell: 2 atoms

Figure S10: Phonon bands dispersion curves and integrated partial DOS of As-A7.

2.3.2 Pure element: Te-A8, P3₁21 (152), 3 atoms

Figure S11: Phonon bands dispersion curves and integrated partial DOS of Te-A8.

Figure S12: Phonon bands dispersion curves, integrated partial DOS and thermal properties of α -As₂Te₃ phase.

Figure S13: Phonon bands dispersion curves, integrated partial DOS and thermal properties of β -As₂Te₃ phase.

Figure S14: Phonon bands dispersion curves, integrated partial DOS and thermal properties of β' -As₂Te₃ phase, C2/m(12).

Figure S15: Phonon bands dispersion curves, integrated partial DOS and thermal properties of $\beta'-As_2Te_3$ phase, C2/m(11).

Figure S16: Electronic band gap calculated as a function of an isotropic stress of the β -As₂Te₃ and β' -As₂Te₃ phase.

The figure S16 has been obtained by the investigation of the overlapping electronic bands of As_2Te_3 at the Fermi level during an isotropic stress given, as illustrated in figure S17.

Figure S17: Zoom windows of the electronic band gap of the β -As₂Te₃ under pressure.

List of Figures

S1	Experimental PXRD pattern of β -As ₂ Te ₃ and its Rietveld analysis. The	
	red open circles are the experimental data, the black line is the calculated	
	pattern, the bottom blue line is the difference between the experimental	
	and calculated pattern and the green vertical ticks stand for the Bragg	
	reflections of β -As ₂ Te ₃	3
S2	Total DOS of α -As ₂ Te ₃ phase.	7
S3	Partial DOS of α -As ₂ Te ₃ phase.	8
S4	Total DOS of β -As ₂ Te ₃ phase.	9
S5	Partial DOS of β -As ₂ Te ₃ phase	9
S6	Total DOS of β' -As ₂ Te ₃ phase, $C2/m(12)$	10
S7	Partial DOS of β' -As ₂ Te ₃ phase, $C2/m(12)$	10
S8	Total DOS of β' -As ₂ Te ₃ phase, $P2_1/m(11)$	11
S9	Partial DOS of β' -As ₂ Te ₃ phase, $P2_1/m(11)$	13
S10	Phonon bands dispersion curves and integrated partial DOS of As – $A7.$	14
S11	Phonon bands dispersion curves and integrated partial DOS of Te $-A8.$	14
S12	Phonon bands dispersion curves, integrated partial DOS and thermal prop-	
	erties of α -As ₂ Te ₃ phase.	15
S13	Phonon bands dispersion curves, integrated partial DOS and thermal prop-	
	erties of β -As ₂ Te ₃ phase.	16
S14	Phonon bands dispersion curves, integrated partial DOS and thermal prop-	
	erties of β' -As ₂ Te ₃ phase, $C2/m(12)$	17
S15	Phonon bands dispersion curves, integrated partial DOS and thermal prop-	
	erties of β' -As ₂ Te ₃ phase, $C2/m(11)$	18
S16	Electronic band gap calculated as a function of an isotropic stress of the	
	β -As ₂ Te ₃ and β' -As ₂ Te ₃ phase.	19
S17	Zoom windows of the electronic band gap of the β -As ₂ Te ₃ under pressure.	19