Supporting Information

Performance Improvement for Printed Indium Gallium Zinc

Oxide Thin-film Transistors with Preheating Process

Meilan Xie, Shaojing Wu, Zheng Chen,* Qasim Khan, Xinzhou Wu, ShuangShuang Shao, and Zheng Cui*

Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China

*E-mail: <u>zchen2007@sinano.ac.cn</u>; zcui2009@sinano.ac.cn.

Figure S1. (a) Optical morphology of the ink-jet printed IGZO lines on SiO₂/Si substrate and (b) 2-D profiles of the printed lines with 1-3 times printing repeatedly, where the IGZO lines were annealed at 300°C in furnace for 2h after a hotplate preheating at 275°C.

Figure S2. TFT characteristics of the spin-coated IGZO thin film poste-annealed at 300°C with different hotplate preheating temperature of 40, 95, 185 and 275°C.

Table S1. Electrical parameters of the spin-coated IGZO-TFTs (shown in Fig. 2S) annealed at300°C with Different Preheated Temperatures.

preheating	field effect	threshold	sub-threshold	current
temperature	mobility,	voltage,	swing,	on/off ratio,
(°C)	$\mu (\mathrm{cm}^{2}\mathrm{V}^{-1}\mathrm{s}^{-1})$	$V_{th}\left(V ight)$	$SS(V \cdot dec^{-1})$	I_{on}/I_{off}
40	1.44	10	0.80	~108
95	1.57	10	0.83	~10 ⁸
185	2.37	8	0.76	~108
275	7.90	10	0.73	>108

preheating temperature (°C)	In: Ga: Zn: N (molar ratio)
40	3: 0.68: 2.14: 1.17
95	3: 0.65: 2.23: 1.09
185	3: 0.60: 2.24: 1.12
275	3: 0.55: 2.16: 1.17

Table S2. Molar ratio of In: Ga: Zn: N that is detected from XPS spectra of the spin-coatedIGZO films annealed at 300°C with Different Preheating Temperatures.

Figure S3. The TGA measured in air of the powders dried off at 40°C from solutions of $In(NO_3)_3$, $Ga(NO_3)_3$, $Zn(NO_3)_2$ and IGZO precursor solution.

Figure S4. AFM images of surface morphology of the spin-coated films annealed at 300°C in furnace for 2h with variable hotplate preheating temperatures: (a) 40°C (RMS=0.43 nm), (b) 95°C (RMS=0.13 nm), (c) 185°C (RMS=0.14 nm), (d) 275°C (RMS=0.13 nm).