Supporting Information

A Catch-Release Catalysis System Based on Supramolecular Host-Guest Interactions

Miao Qi,^{ab} Benny Kia Jia Chew,^{ab} Kwai Ga Yee,^{ab} Zhong-Xing Zhang,^{*a} David J. Young,^{*acd} T. S. Andy Hor^{*abe}

^a Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
^b Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science, Drive 3, Singapore, 117543, Singapore.
^c Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Qld 4558, Australia.
^d School of Science, Monash University, 47500 Bandar Sunway, Selangor D.E., Malaysia.
^e Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong.

^{*} Corresponding author. E-mails: andyhor@nus.edu.sg; andyhor@hku.hk; dyoung1@usc.edu.au; zhangzx@imre.a-star.edu.sg; Telephone: +852 2857 8213 (Prof. T. S. A. Hor); +61 7 5456 3448 (Prof. D. J. Young); +65 6501 1800 (Dr. Z.-X. Zhang)

Figure S1. (Top) ¹H NMR spectrum of carboxyl- β -CD (β -CD-COOH) in D₂O (300 MHz, 25 °C); (bottom) ¹³C NMR spectrum of β -CD-COOH in DMSO-*d*₆ (75.5 MHz, 25 °C).

Figure S2. (Top) Representative histogram showing the size distribution of β -CD coated Fe₃O₄ magnetic nanoparticles (β -CD-MNP) by DLS at room temperature in water (0.1 mg/mL, pH 6.0, at least 3 individual measurements); (bottom) Zeta potential measurement for β -CD-MNP by DLS at room temperature in water (0.1 mg/mL, pH 6.0, at least 3 individual measurements).

Figure S3. Characterization by pXRD (in solid) and DLS (in water, room temperature) for bare MNP (top) and succinate MNP (bottom). Conditions for DLS: 0.1 mg/mL, pH 6.0, at least 3 individual measurements.

Figure S4. Calibration curve of absorbance versus concentration of catalyst (Ad-L-PdCl₂) in H_2O -CH₃OH (2/1, v/v) (Cuvette: quartz; slit width: 1.0 nm; wavelength range: 200 nm – 800 nm; absorption peak: 209 nm; room temperature).

Figure S5. SEM-EDS analysis of separated β -CD-MNP from the mixture of catalyst and β -CD-MNP in H₂O-CH₃OH (2/1, v/v). Amount of catalyst (before catch): 0.35 mg in H₂O-CH₃OH (2/1, v/v), 1.5 mL; β -CD/Ad molar ratio: 0.70; room temperature.

Figure S6. Calibration curve of absorbance versus concentration of catalyst (Ad-L-PdCl₂) in methanol (Cuvette: quartz; slit width: 1.0 nm; wavelength range: 200 nm - 800 nm; absorption peak: 209 nm; room temperature).

Figure S7. SEM-EDS analysis of separated β -CD-MNP from the mixture of a Suzuki-Miyaura coupling reaction filtrate and β -CD-MNP in H₂O-CH₃OH (2/1, v/v). Initial catalyst loading: 0.35 mg in H₂O-CH₃OH (2/1, v/v), 1.5 mL; β -CD/Ad molar ratio: 2.0; room temperature.