Supporting Information

Facile synthesis of 3D porous nitrogen-doped graphene as an efficient electrocatalyst for adenine sensing

Junhua Li ^{a,b,c}, Jianbo Jiang ^a, Haibo Feng ^a, Zhifeng Xu ^b, Siping Tang ^b, Peihong Deng ^b, Dong Qian ^{a,c,*}

^a College of Chemistry and Chemical Engineering, Central South University, Changsha
410083, PR China

^b College of Chemistry and Material Science, Hengyang Normal University, Hengyang
421008, PR China

^c State Key Laboratory of Powder Metallurgy, Central South University, Changsha
410083, PR China

* Corresponding author. Tel/Fax: +86-731-88879616. E-mail address qiandong6@vip.sina.com (D. Qian).

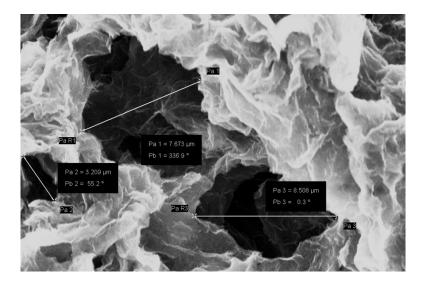


Fig. S1 The pore sizes of 3D porous nitrogen-doped graphene

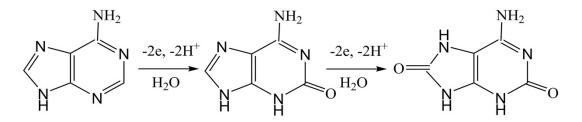


Fig. S2 The possible mechanism for adenine oxidation at the 3D-N-GN/GCE

Determination number	Oxidation peak current (µA)	RSD (%)
1	7.139	_
2	7.105	_
3	6.989	_
4	6.906	_
5	6.802	_
6	6.781	_
		2.17

Table S1 The six determination results for 1.0 μ M adenine using the same 3D-N-GN/GCE.

Electrode number	Oxidation peak current (µA)	RSD (%)
1	7.259	_
2	7.338	_
3	7.192	_
4	6.801	_
5	6.706	_
6	6.652	_
		4.36

Table S2 The determination results for 1.0 μ M adenine using the six sensors fabricated under the same conditions.

Table S3 The determination results for 1.0 μ M adenine using the same sensor with the storage of one month.

Determination time	Day 1	Day 6	Day 12	Day 18	Day 24	Day 30
Oxidation peak current (µA)	6.694	6.612	6.520	6.275	5.967	5.824
Present value/original value (%)	_	98.7	97.4	93.7	89.1	87.0

Table S4 Influence of some possible interfering substances on the determination of 1.0 μ M adenine (n = 3).

Interfering substances	Concentration (μM)	Oxidation potential ^a (V)	Relative error (%)
Glucose	500	b	2.14
Sucrose	500	_	1.75
Arginine	500	_	1.63
Alanine	500	_	-1.81
Threonine	500	_	1.56
Serine	500	_	-0.96
Valine	500	_	1.12
Cysteine	500	0.325	-2.37

Tyrosine	50	0.695	3.65
Tryptophan	50	0.796	4.23
Ascorbic acid	50	0.119	3.78
uric acid	50	0.492	-2.55
Dopamine	50	0.289	7.89
Guanine	50	0.825	3.25
Thymine	50	1.223	4.56
Cytosine	50	1.306	3.68

^a Oxidation potentials of interfering substances obtained at 3D-N-GN/GCE.

^b No signal or weak signal observed.

Table S5 The	applications	of 3	D-N-GN/GCE	for	the	determination	of	adenine	in
biological fluid	S.								

Sample	Spiked (µM)	Found $^{a}(\mu M)$	Recovery (%)	RSD ^b (%)
Rabbit serum	0.20	0.19	95.0	3.9
	0.50	0.52	104.0	4.2
	0.80	0.83	103.8	3.2
human urine	0.20	0.21	105.0	2.7
	0.50	0.47	94.0	3.3
	0.80	0.78	97.5	2.5

^a Average of five determinations; ^b RSD: relative standard deviation.