Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Surface functionlization of natural lignin isolated from *Aloe barbadensis* Miller biomass via atom transfer radical polymerization to enhanced anticancer efficacy

Murugaraj Jeyaraj^a, Rajendran Amarnath Praphakar^b, Chinnusamy Rajendran^b,

Deepalekshmi Ponnamma^c, Kishor Kumar Sadasivuni^c, Murugan A. Munusamy^d, Mariappan

Rajan b*

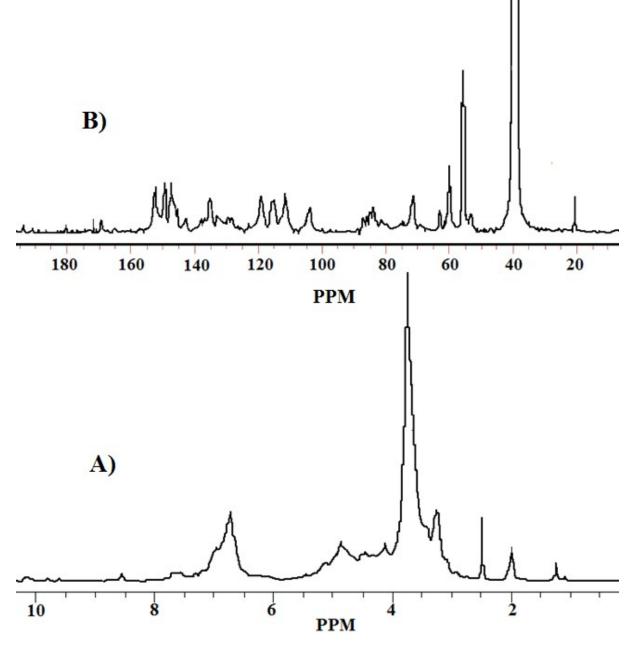
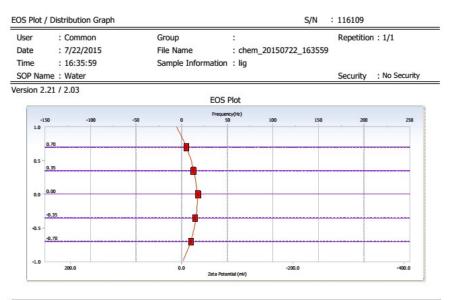
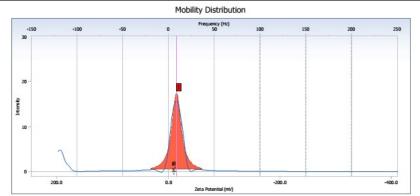




Figure S1. ¹H (A), ¹³C (B) NMR spectrum of commercial lignin

Delsa[™] Nano Common

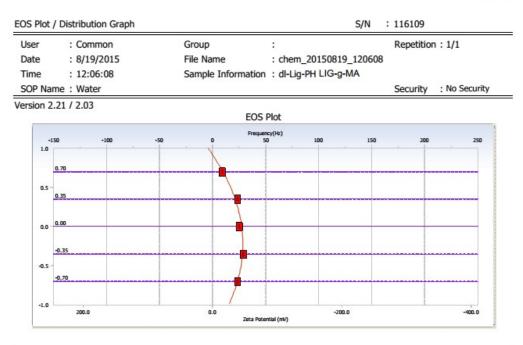

Measurement Results							
Zeta Potential Mobility Conductivity	: -14.56 : -1.135e-004 : 1.6487	(mV) (cm²/Vs) (mS/cm)	Doppler shift Base Frequency	: 8.87 : 111.6	(Hz) (Hz)		
Zeta Potential of Cell Upper Surface Lower Surface Cell Condition Cell Type	: -23.67 : -12.99 : Flow Cell	(mV) (mV)	Diluent Properties Diluent Name Temperature Refractive Index	: WATER : 25.0 : 1.3328	(°C)		
Avg. Electric Field Avg. Current	: -16.17 : -1.33	(V/cm) (mA)	Viscosity Dielectric Constant	: 0.8878 : 78.3	(cP)		

Fig S2. Zeta pontential value of isolated Lignin

Delsa™ Nano

Common

Measurement Results							
Zeta Potential Mobility Conductivity	: -30.01 : -2.340e-004 : 1.2363	(mV) (cm²/Vs) (mS/cm)	Doppler shift Base Frequency	: 18.32 : 112.2	(Hz) (Hz)		
Zeta Potential of Cell Upper Surface Lower Surface Cell Condition	: -36.72 : -5.18	(mV) (mV)	Diluent Properties Diluent Name Temperature	: WATER : 25.0	(°C)		
Cell Type Avg. Electric Field Avg. Current	: Flow Cell : -16.20 : -1.00	(V/cm) (mA)	Refractive Index Viscosity Dielectric Constant	: 1.3328 : 0.8878 : 78.3	(cP)		

Fig S3. Zeta pontential value of LIG-g-MA halo-nanocarrier

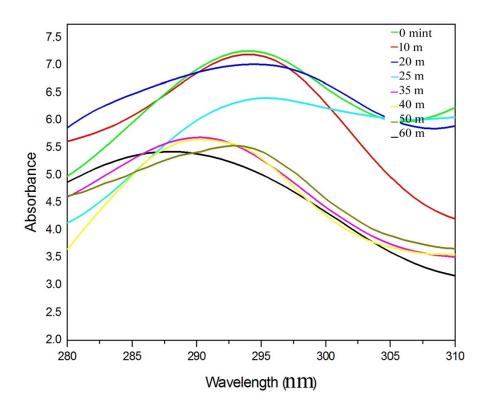


Fig S4. Encapsulation effiecy of LIG-g-MA halo-nanocarrier

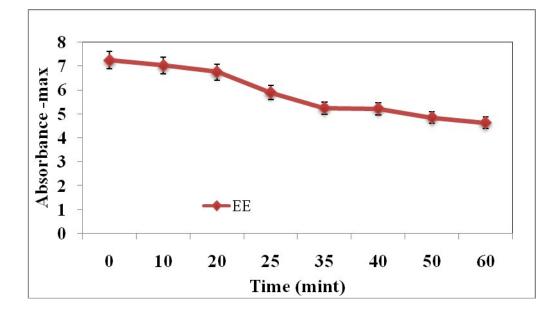


Fig S5. Encapsulation efficiency of LIG-g-MA holo-nanocarrier at different time intervals

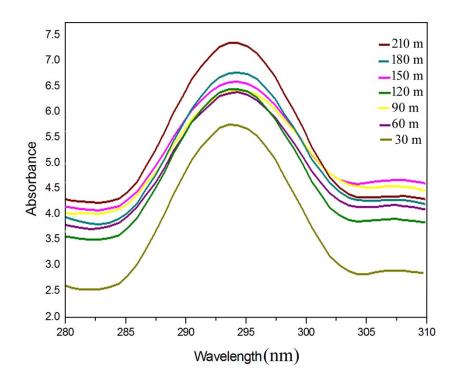


Fig S6. In-vitro drug release of LIG-g-MA halo-nanocarrier at pH 2.4 medium

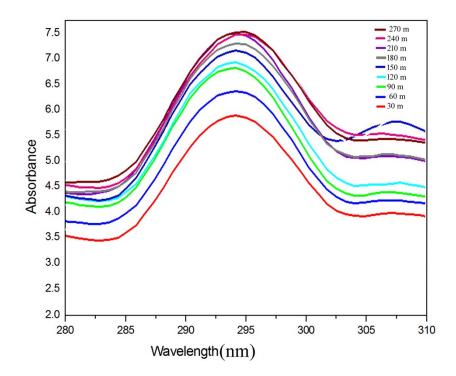


Fig S7. In-vitro drug release of LIG-g-MA halo-nanocarrier at pH 6.8 medium

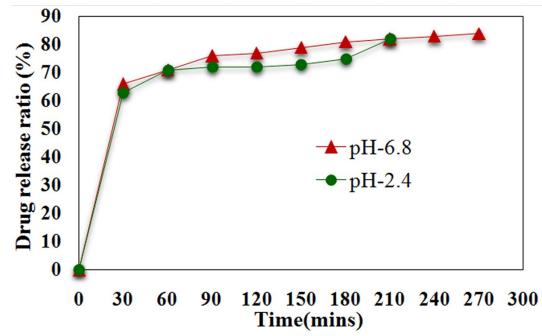


Fig S8. The study of in-vitro 5-FU release from LIG-g-MA holo-nanocarrier at pH 2.4 and 6.8

medium

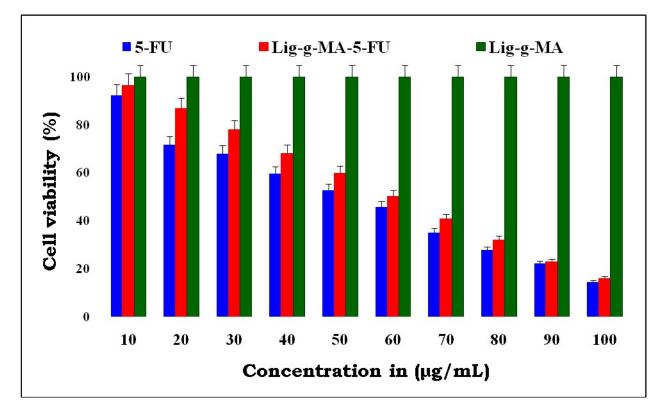


Fig S9. Cell viability studies of 5-FU, 5-FU loaded LIG-g-MA holo-nanocarrier and unloaded LIG-g-MA halo-nanocarrier against MCF-7 cells determined by MTT assay. The results represented as mean \pm standard deviation of three individual experiments. The IC₅₀ values of 5-FU and 5-FU loaded carrier against MCF-7 cells were µg/mL, respectively.