Supplementary information's

Oxygen evolution catalytic behaviour of Ni doped Mn₃O₄ in alkaline medium

V. Maruthapandian,* T. Pandiarajan, V. Saraswathy* and S. Muralidharan

CSIR-Central Electrochemical Research Institute, Karaikudi-630003, Tamilnadu, India.

Tel phone: +91-4565-241393, +91-4565-241359; Fax: +91-4565-227779 E-mail: maruthuori.tn@gmail.com and corrsars@gmail.com

1. X-ray diffraction patterns

Fig. S1. X-ray diffraction patterns of Mn₃O₄ and Ni doped Mn₃O₄ in which (a) bare Mn₃O₄, (b) 1 wt% Ni doped Mn₃O₄, (c) 5 wt% Ni doped Mn₃O₄ and (d) 10 wt% Ni doped Mn₃O₄.

Spinel (AB₂O₄) based metal oxide are of great interest in the recent years in variety of technological applications due to the mixed valent metal cations of A^{2+} and B^{3+} offers more possible option to replace the metal cations to tune the desirable properties and applications vice versa. In Mn₃O₄, The Mn exists as Mn²⁺ in A site and Mn³⁺ in B site. Based on these principles recently, the catalytic, supercapactive and magnetic properties of Mn₃O₄ are tuned by the doping of Ni, Co and Cr.¹⁻³ In this regard, the present study is the evaluation of catalytic behavior of Mn₃O₄ by the doping of Ni in the form of Ni²⁺ ion in A lattice of Mn₃O₄. The doping is possible due to the closest ionic radii of Mn²⁺ (0.80 Å) and Ni²⁺ (0.69Å).

While doping of Ni^{2+} in the Mn_3O_4 , the tetrahedral site Mn^{2+} ion are partially doped /replaced/substituted by the Ni^{2+} ions, in mean time the octahedral site contains the Mn^{3+} ions as

such without any substitution.² Fig. S1 shows the XRD patterns of the present study of bare Mn_3O_4 and 1, 5 and 10 wt% Ni doped Mn_3O_4 samples. In the XRD patterns no characteristics peak changes are observed (the peaks are highlighted in Fig S1). It is due to the previously mentioned same ionic radii of dopant of Ni and comparably very low level of Ni doping (Ni is doped 1, 5 and 10 wt% on the basis of total wt% in the Mn_3O_4). This similar trend in XRD pattern is observed in the recent studies of Cr, Co, Ni and Cu doped Mn_3O_4 and Cr doped $NiFe_2O_4$.¹⁻⁴

Fig. S2. X-ray diffraction pattern of 1 wt% Ni doped Mn₃O₄ with standard diffraction patterns of NiO

Fig. S3. X-ray diffraction of pattern of 5 wt% Ni doped Mn_3O_4 with standard diffraction patterns of NiO

2. Selected area diffraction studies for lattice parameters

Table S1. Calculated lattice parameter of Mn₃O₄ through the SAED

2R in pix	R in 1/nm	Calculated	JCPDS No	hkl
		D space in Å	24-0734	
		_	D space in Å	
161.47	2.0183	4.9544	4.9240	101
261.84	3.2730	3.0553	3.0890	112
322.67	4.0333	2.4793	2.4870	211
326.22	4.0777	2.4523	2.4630	202
344.45	4.3056	2.3225	2.3670	004
447.69	5.5961	1.7869	1.7988	105
511.69	6.3961	1.5634	1.5762	321
521.49	6.5186	1.5340	1.5443	224
613.65	7.6706	1.3036	1.2777	413

Fig. S5. Selected area diffraction pattern Mn_3O_4 (5 nm = 200 pixel).

2R in pix	R in 1/nm	D space in Å	JCPDS	hkl
			No 24-	
			0734	
			D space in	
			Å	
409.42	4.0942	2.4424	2.4870	211
509.22	5.0922	1.9637	2.0369 220	
589.07	5.8907	1.6975	1.7008	312

Table S2. Calculated lattice parameter of 10 wt% Ni doped Mn₃O₄ through the SAED

Fig. S6. Selected area diffraction patter of 10 wt% Ni doped Mn_3O_4 (10 nm = 500 pixel).

The measured diameter of SAED in pixel unit is not visible in the Fig. S6 as such condition. It is visible under magnification only.

3. Elemental mapping of Mn and Ni

Fig. S7. Elemental mapping of Mn and Ni in 10 wt% Ni doped Mn_3O_4 .

Eleme nt	Weight %	Atomic %	Compd %	Formu la
Mn K	69.23	44.93	89.39	MnO
Ni K	8.34	5.07	10.61	NiO
0	22.43	50.00		
Totals	100.00			

Table S3.Elemental composition of as prepared 10 wt% ni doped Mn₃O₄ by EDS analysis.

4. Atomic absorption spectrum studies

Fig. S8. Theoretical and observed Ni/Mn ratio of Mn₃O₄ and Ni doped Mn₃O₄. Where S1) Mn₃O₄, S2) 1 wt% Ni doped Mn₃O₄, S3) 5 wt% Ni doped Mn₃O₄ and S4) 10 wt Ni doped Mn₃O₄.

5. FTIR spectrum studies

Fig. S9. FTIR spectrum of Mn₃O₄ and Ni doped Mn₃O₄.

Fig. S10. Survey spectrum of 10 wt% Ni doped Mn₃O₄.

6. Micro-structural characterizations

Fig. S11. SEM images of a) Mn₃O₄, b) 1 wt% Ni doped Mn₃O₄, c) 5 wt% Ni doped Mn₃O₄ and d) 10 wt % Ni doped Mn₃O₄.

7. Cyclic stability of 10 wt% Ni doped Mn₃O₄

Fig. S12. Catalytic cyclic stability of 10 wt% Ni doped Mn₃O₄ from the cyclic voltammetry data anodic part recoded at the scan rate of 2 mV s⁻¹ in 1 M KOH.

References

- 1. G. Li, X. B. Tang, S. Y. Lou, and S. M. Zhou, Appl. Phys. Lett., 2014, 104, 173105.
- 2. S. Hirai, S. Yagi, A. Seno, M. Fujioka, T. Ohno and T. Matsuda, RSC Adv., 2016, 6, 2019.
- 3. R. Dong, Q. Ye, L. Kuang, X. Lu, Y. Zhang, X. Zhang, G. Tan, Y. Wen and F. Wang, *ACS Appl. Mater. Interfaces.*, 2013, **5**, 9508.
- R.N. Singh, J.P. Singh, B. Lala, M.J.K. Thomasb, S. Bera, *Electrochimica Acta.*, 2006, 51 5515.