Support Information

Direct synthesis of N-Sulfenylimines through oxidative coupling of

amines with disulfides/thiols over copper based metal-organic

frameworks

Wei Long ^a, Wenge Qiu ^{a,*}, Chuanqiang Li ^b, Liyun Song ^a, Guangmei Bai ^a, Guizhen Zhang ^a, Hong He ^{a,*}

Additional Figures and Data

Figure S1. Nitrogen sorption isotherms of fresh *pcu*-MOF sample (squares) and used *pcu*-MOF sample (cycles) after five catalysis cycles at 77 K.

Figure S2. SEM images of fresh (a) and used (b) pcu-MOF samples after five catalysis cycles.

Figure S3. Thermogravimetric curve of the fresh *pcu*-MOF sample under N_2 atmosphere with a heating rate of 10 °C/min.

Figure S4. Nitrogen sorption isotherms of fresh CuBTC sample (Its BET surface area of CuBTC sample was 1295 m^2/g).

Figure S5. X-ray diffraction patterns of the as-synthesized CuBTC sample.

Figure S6. Continuous wave EPR spectra of pure *pcu*-MOF (a), *pcu*-MOF with 4-methoxybenzylamine (b) and *pcu*-MOF with diphenyldisulfide (c) at X-band at 90 °C.

Table S1 Characterization results of fresh and used pcu-MOF samples after five catalysis cycles.

	$S_{BET}(m^2/g)$	Vtotal/cm ³ /g	Daverage/nm
Fresh <i>pcu</i> -MOF sample	2010	0.979	1.94
Used <i>pcu</i> -MOF sample	1743	0.929	2.13

Table S2 Oxidation of 4-methoxylbenzylamine *

H ₃ C ₀	NH_2 $$ H_3C Catalyst/120°C	NH H ₂ O	H ₃ C ₀
Time	<i>pcu-</i> MOF + DTBN §	<i>pcu-</i> MOF + TBD§	<i>pcu-</i> MOF §
4h	29	12	14
8h	53	25	27
12h	67	34	36
24h	95	59	60
36h	96	77	81

* Reaction condition: 4-methoxylbenzylamine (5 mmol), MOFs (0.125 mmol, based on copper), DTBN (0.5 mmol), or TBD (0.5 mmol), solvent (5 mL), for 18 h under O₂ atmosphere. § Yields of the 4-methoxylbenzylaldehyde.

Table S3 Coupling reaction of diphenylmethylimine and diphenyldisulfide over pcu-MOF *

additive	DTBN	TBD	TBD + DTBN	TBD+ DTBN	No additive	
Yield	57	59	65ª	8 ^b	5	

* Reaction condition: Diphenylmethylimine (5 mmol), diphenyldisulfide (1.25 mmol), *pcu*-MOF (0.125 mmol, based on copper), DTBN (0.5 mmol), or TBD (0.5 mmol), solvent (5 mL), for 18 h under O₂ atmosphere. (a) DTBN (0.25 mmol) and TBD (0.25 mmol) were used; (b) The reaction was carried out under nitrogen atmosphere.

¹H-NMR figures of all products

N-(3-methylbenzylidene)-S-phenylthiohydroxylamine

N-(benzo[d][1,3] dioxol-5-ylmethylene)-S-phenylthiohydroxylamine

N-(4-chlorobenzylidene)-S-phenylthiohydroxylamine

N-(2-chlorobenzylidene)-S-phenylthiohydroxylamine

N-(3-nitrobenzylidene)-S-phenylthiohydroxylamine

N-(3-methoxybenzylidene)-S-(4-chlorophenyl)thiohydroxylamine

N-(3-methoxybenzylidene)-S-(4-fluorophenyl)thiohydroxylamine

N-(diphenylmethylene)-S-phenylthiohydroxylamine

S-phenyl-N-(1-phenylethylidene)thiohydroxylamine

S-phenyl-N-(1-phenylpropylidene)thiohydroxylamine

N-(cyclohexylidene)-S-phenylthiohydroxylamine

¹³C-NMR figures of all products

N-(4-methoxybenzylidene)-S-phenylthiohydroxylamine

N-(3-methoxybenzylidene)-S-phenylthiohydroxylamine

N-(benzo[d][1,3]dioxol-5-ylmethylene)-S-phenylthiohydroxylamine

N-(4-chlorobenzylidene)-S-phenylthiohydroxylamine

N-(3-nitrobenzylidene)-S-phenylthiohydroxylamine

N-(3-methoxybenzylidene)-S-(4-chlorophenyl)thiohydroxylamine

N-(3-methoxybenzylidene)-S-(4-fluorophenyl)thiohydroxylamine

N-(diphenylmethylene)-S-phenylthiohydroxylamine

S-phenyl-N-(1-phenylethylidene)thiohydroxylamine

S-phenyl-N-(1-phenylpropylidene)thiohydroxylamine

N-(cyclohexylidene)-S-phenylthiohydroxylamine