Nanohydroxyapatite/cellulose nanocrystals/silk fibroin ternary scaffolds for rat calvarial

defect regeneration

Xiaoming Chen^{a, b}, Runmei Zhou^c, Bin Chen^d, Jianting Chen^{a*}

^a Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University,

Guangzhou 510515, China

^b Department of Orthopedic Spinal Surgery, the 2th Affiliated Hospital, University of South China,

Hengyang 421001, China

^c Department of Pharmacy, the 2th Affiliated Hospital, University of South China, Hengyang

421001, China

^d Department of Orthopedic Spinal Surgery, Chenzhou No.1 People's Hospital, Chenzhou 423000,

China

* Corresponding author

Email: chenjt99@tom.com

Tel/Fax: +86-20-87640940

Fig.S1 TEM micrographs of CNC.

Fig.S2 Surgical process of composite scaffold transplantation into rat calvarial defects.

Fig.S3 FTIR spectra of HA, cellulose nanocrystals (CNC), silk fibroin (SF) and SF-based

composite scaffolds.