Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Application of magnetic lamotrigine-imprinted polymer nanoparticles as an

electrochemical sensor for trace determination of lamotrigine in biological samples

Majid Kalate Bojdi^a, Mohammad Behbahani^{b, *}, Ghasem Hesam^c, Mohammad Hosein

Mashhadizadeh^d

^a Department of Chemistry, Faculty of Science, University of Birjand, Birjand, South Khorasan,

Iran

^bDepartment of Chemistry, Behbahan Khatam Alanbia University of Technology, Behbahan,

Iran

^cDepartment of Occupational Health Engineering, School of Public Health, Shahroud University

of Medical Sciences, Shahroud, Iran

^d Faculty of Chemistry, Kharazmi (Tarbiat Moallem) University, Tehran, Iran

*Corresponding author. Tel.: +98 21 88848949; fax: +98 21 88820993.

E-mail addresses: Mohammadbehbahani89@yahoo.com

Synthesis of Fe₃O₄@SiO₂

For preparation of Fe₃O₄ nanoparticles, 10.4 g of FeCl₃.6H₂O and 4.0 g of FeCl₂.4H₂O were dissolved in 100 mL of deionized water, degassed with nitrogen for 15 min and heated to 80 °C. Then, 15 mL of NH₄OH (32% solution) was added dropwise to the solution. After 15 min the solid was separated by a magnet and washed three times with 0.1 mol L⁻¹ NaCl solution [1]. The synthesized Fe₃O₄ nanoparticles (1.0 g) were dispersed in 300 mL mixture of ethanol and double distilled water (4:1, v/v) by ultrasonic vibration for 15 min. Subsequently, NH₄OH (15 mL) and tetraorthosilicate (2.1 mL) were continuously added into the reaction mixture. The reaction was stirred for 12 h at 40 °C and finally the product was collected by a magnet.

Synthesis of Fe3O4@SiO2@MPTS

 $Fe_3O_4@SiO_2$ nanoparticles (500 mg) were chemically modified by 5.0 mL of 3methacryloxypropyl trimethoxysilane (MPTS) in 30 mL toluene solution under nitrogen atmosphere. The mixture was refluxed for 24 h at 120 °C and then $Fe_3O_4@SiO_2@MPTS$ was collected by a magnet and washed with toluene and distilled water.

Characterization of magnetic molecular imprinted polymer

Figure 1S (Electronic Supplementary Material (ESM)) shows the XRD patterns of the Fe₃O₄, Fe₃O₄@SiO₂, Fe₃O₄@SiO₂@MPTS and MMIPs magnetic nanoparticles. There are several relatively strong diffraction peaks in the region of 20–70, which are identical to those of Fe₃O₄ nanoparticles reported earlier [2,3]. This revealed that Fe₃O₄, Fe₃O₄@SiO₂, Fe₃O₄@SiO₂@MPTS and MMIPs nanoparticles were composed of Fe₃O₄, and the Fe₃O₄ nanoparticles remained unchanged after each functionalization step (no decomposition or converting to Fe₂O₃).

FT-IR spectra of Fe₃O₄, Fe₃O₄@SiO₂, Fe₃O₄@SiO₂@MPTS, leached MMIPs, and magnetic non imprinted polymer (MNIPs) were recorded and results ensure further preparation of the MMIPs.

As shown in Figure 2S (ESM), the bands at 590 cm⁻¹ are indicative of the presence of the Fe-O-Fe bond. The Fe-O-Fe bond found in Fe₃O₄@SiO₂, Fe₃O₄@SiO₂@MPTS, MMIPs, and MNIPs proved that Fe_3O_4 was embedded in these materials. The peaks around 960 and 1150 cm⁻¹ are attributed to the stretching vibration of Si-O-H and Si-O-Si, respectively. The Fe_3O_4 (a)SiO_2 (a)MPTS displayed stretching vibration peak of C=O at 1714 cm⁻¹, suggesting that MPTS was successfully modified onto the surface of $Fe_3O_4(a)SiO_2$. Furthermore, the C=O peak of MMIPs and MNIPs at 1730 cm⁻¹ showed that they were synthesized through the polymerization of EGDMA and MAA. Thermal analysis graphs of the synthesized Fe₃O₄ Fe₃O₄@SiO₂, Fe₃O₄@SiO₂@MPTS and MMIPs magnetic nanoparticles are shown in Figure 3S (ESM). As can be seen in the thermogram of Fe₃O₄@SiO₂@MPTS, the weight loss in the temperature range of 300 to 500 C is about 11.5%, which can be attributed to the loss of MPTS layer. The total weight loss of Fe₃O₄(a)SiO₂(a)MPTS(a)MIP is about 75%, which may be due to the loss of MPTS and imprinted polymer layers. The residue can be associated with the more thermally resistant Fe₃O₄ magnetite particles, giving a magnetite encapsulation efficiency of 25%. The achieved encapsulation efficiency is considerably high and satisfactory. The observations indicate that the synthesis of MMIPs was performed successfully.

	Ι (μΑ)	
Compound	CPE	MMIP
LTG (1×10 ⁻⁷ M)	- 0.49	-15.2
2,4,6-triamino- pyrimidine $(1 \times 10^{-7} \text{ M})$	- 0.41	-1.4
2,6-diamine pyridine $(1 \times 10^{-7} \text{ M})$	- 0.21	-1.7
3-amino-1,2,4-triazine (1×10 ⁻⁷ M)	- 0.52	-1.3
2,4-diamino-6-phenyl-1,3,5-triazine (1×10 ⁻⁷ M)	- 0.50	-2.1

Table 1S: Comparison of the DPV responses of the LTG similar compounds at carbon paste
 electrode (CPE) and magnetic molecular imprinted polymer procedure (MMIP).

Week	Added	Founded	Recovery (%)
2	100 nM	98.2 nM	98.2
6	100 nM	98.4 nM	98.4
10	100 nM	99.1 nM	99.1
12	100 nM	98.5 nM	98.5
15	100 nM	98.1 nM	98.1
20	100 nM	99.0 nM	99.0
22	100 nM	98.7 nM	98.7
24	100 nM	97.5 nM	97.5
26	100 nM	89.0 nM	89.0
28	100 nM	85.2 nM	85.2

Table 2S: The effect of time on DPV responses of the LTG by the introduced procedure.

Figure 1S: XRD patterns of synthesized sorbent after each step.

Figure 2S. FT-IR spectra of (a) Fe_3O_4 (b) $Fe_3O_4@SiO_2$ (c) $Fe_3O_4@SiO_2@MPTS$ (d) Magnetic-MIP (e) Magnetic-NIP.

Figure 3S. Thermogravimetric analysis curves of synthesized sorbent after each step.

Figure 4S. The effect of pH on the LTG extraction by Magnetic-MIP; (a): the DPVs data in different pH, (b): curve of Ip vs pH.

Ip(µA)

Figure 5S. The effect of extraction time on the differential pulse voltammetric peak current for 1.0 nM LTG.

Figure 6S: Comparison of differential pulse voltammetric responses of MC-CPE with magnetic-MIP and magnetic-NIP with and without washing steps; $[LTG] = 1.0 \times 10^{-9}$ M, Solution pH 5.5, shaking time = 5 min, accumulation time = 2 min;(a) Magnetic-MIP before washing (b) Magnetic-MIP after washing with water (c) Magnetic-NIP before washing (d) Magnetic-NIP after washing with water for 30 second.

References:

- M. Behbahani, S. Bagheri, M.M. Amini, H. Sadeghi Abandansari, H.R. Moazami, A. Bagheri, J. Sep. Sci., 2014, 37, 1610-1616.
- [2] F. Lu, H. Li, M. Sun, L. Fan, H. Qiu, X. Li, C. Luo, Anal. Chim. Acta, 2012, 718, 84-91.
- [3] X. Wang, L.Y. Wang, X.W. He, Y.K. Zhang, L.X. Chen, Talanta, 2009, 78, 327-332.