Electronic Supplementary Information (ESI)

Dodecylamine-derived thin carbon-coated single Fe₃O₄

nanocrystals for advanced lithium ion batteries

Min-Young Cho,^{a,b} Seung-Beom Yoon,^c Kwang-Bum Kim,^b Dae Soo Jung*c and Kwang Chul Roh*a

^a Energy Efficient Materials Team, Energy & Environmental Division, Korea Institute of Ceramic Engineering
& Technology, 101, Soho-ro, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea.

^b Department of Materials Science & Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

^c Samsung SDI, Battery Business, 467, Beonyeong-ro, Seobuk-gu, Cheonan-si, Chungcheongnam-do 31086, Republic of Korea.

^d Eco Composite Materials Team, Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-ro, Jinju-si, Gyongsangnam-do 52851, Republic of Korea.

Fig. S1 FE-SEM images of the precursors (a) with and (b) without DDA. XRD patterns of precursors and synthesized samples after heat treatment at 500 °C for 4 h under argon (c) with and (d) without DDA.

Fig. S2 (a) FE-SEM image (inset: TEM image), (b) XRD pattern, (c) TGA curve, and (d) N_2 adsorptiondesorption isotherms (inset shows the pore size distribution by the BJH method) of the OC-Fe₃O₄ sample, which was synthesized without dodecylamine and then carbon layer added to the surface.

Fig. S3 The second CV curves of (a) OC-Fe₃O₄ during the initial three cycles at a scan rate of 0.1 mV s⁻¹. (b) The equivalent circuit model for fitting the EIS plots. The second CV curves of (c) IOC-Fe₃O₄ and (d) OC-Fe₃O₄ in the voltage range of 0.01–3 V vs. Li/ Li⁺ at various scan rates from 0.04 to 10 mV s⁻¹. Charge and discharge profiles of (e) IOC-Fe₃O₄ and (f) OC-Fe₃O₄ during 300 cycles at a current density of 1 A g⁻¹.

Table S1. The carbon contents and electrochemical performances of various Fe_3O_4 composited or coated with carbonaceous materials.

	Carbon content (wt.%)		Total	Current		
Materials	Composited or coated material	Conductive agent	carbon content (wt%)	density (mA g ⁻¹)	Capacity (mAh g ⁻¹)	Ref.
Fe ₃ O ₄ @C	4.2	10	14.2	3000	563	In this study
Fe ₃ O ₄ @C	21.5	15	36.5	4620	190	1
Fe ₃ O ₄ @C	54.6	20	74.6	800	118	2
Fe ₃ O ₄ @C	18	10	28	1000	702	3
Fe ₃ O ₄ @C	19	10	29	1000	290	4
Fe ₃ O ₄ @C	17	10	27	2000	341	5
N-doped carbon coated Fe ₃ O ₄	16	15	31	2000	396	6
Graphene@Fe ₃ O ₄	13.3	10	23.3	1750	520	7
Graphene@Fe ₃ O ₄	35.2	10	45.2	2500	393	8
Graphene oxide@Fe ₃ O ₄	45.5	10	55.5	2000	385	9
Porous carbon fiber@Fe ₃ O ₄	39.2	20	59.2	2000	523	10

References

- 1. J. S. Chen, Y. Zhang, and X. W. Lou, ACS Appl. Mater. Interfaces, 2011, 3, 3276.
- 2. W. -M. Zhang, X. -L. Wu, J. -S. Hu, Y. -G. Guo, and L. -J. Wan, Adv. Funct. Mater., 2008, 18, 3941.
- 3. G. Chen, M. Zhou, J. Catanach, T. Liaw, L. Fei, S. Deng, and H. Luo, Nano Energy, 2014, 8, 126.
- 4. Z. Zeng, H. Zhao, J. Wang, P. Lv, T. Zhang, and Q. Xia, J. Power Sources, 2014, 248, 15.
- 5. J. Wang, M. Gao, D. Wang, X. Li, Y. Dou, Y. Liu, and H. Pan, J. Power Sources, 2015, 282, 257.
- 6. Y. -H. Wan, X. -Q. Shi, H. Xia, and J. Xie, Mater. Res. Bull., 2013, 48, 4791.
- 7. C. Lei, F. Han, W. -C. Li, Q. Sun, X. -Q. Zhang, and A. -H. Lu, Nanoscale, 2013, 5, 1168.
- G. Zhou, D. -W. Wang, F. Li, L. Zhang, N. Li, Z. -S. Wu, L. Wen, G. Q. Lu, and H. -M. Cheng, *Chem. Mater.*, 2010, 22, 5306.
- 9. C. Fu, G. Zhao, H. Zhang, and S. Li, Int. J. Electrochem. Sci., 2014, 9, 46.
- 10. T. Yoon, J. Kim, J. Kim, and J. K. Lee, Energies, 2013, 6, 4830.

Sample	Process	$R_{S}(\Omega)$	$R_{SEI}(\Omega)$	$R_{CT}(\Omega)$
IOC-Fe ₃ O ₄	Discharge	4.69	17.37	36.49
	Charge	4.28	18.81	32.67
OC-Fe ₃ O ₄	Discharge	6.14	41.29	51.75
	Charge	6.26	35.4	38.82

Table S2. Resistance parameters fitted by the equivalent circuit model (Fig. S3b) for IOC-Fe₃O₄ and OC-Fe₃O₄.