Electronic Supplementary Information

Synthesis of rare-earth doped ZnO nanorods and their defect-dopant

correlated enhanced visible-orange luminescence

Arunasish Layek^{*}, Subhasree Banerjee, Biswajit Manna, ⁺ and Arindam Chowdhury

Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India

⁺ Present Address: Bhabha Atomic Research Centre, radiation & Photochemistry Division

Trombay Mumbai, Maharashtra, IN 400085

Corresponding Author

*Email: arrunasis@gmail.com

Fig. S1 XRD pattern shows diffraction peaks shift to lower angle with increasing doping concentration indicating expansion of the ZnO lattice.

Fig. S2 The Williamson-Hall (W-H) analysis of XRD peak broadening of (a) Tb-doped and (b) Eudoped ZnO nanorods respectively. The non-linear behavior W-H plot indicates anisotropic strain. It is noted that there is plausible increase in strain with higher dopant content in ZnO host.

Fig. S3 Variation of actual doping in atom% of RE^{3+} doped in nanorods as obtained from EDS against the amount of RE^{3+} precursors in weight% of $Zn(NO_3)_2$, used during the synthesis of doped ZnO nanorods.

Fig. S4 Fluorescence decays recorded for Tb³⁺ doped ZnO nanorods at the excitation wavelength of 290 nm and emission wavelength of 545 nm. Individual decay traces relate to different amount (weight %) of Tb³⁺ precursors used for doping: 10 weight% (black trace), 20 weight% (red trace), 30 weight% (green trace) and 40 weight% (blue trace).

Table S1. Fluorescence lifetimes (τ) and amplitude (A) recovered from fluorescence decays recorded for the solutions of ZnO nanorods with different Tb³⁺ content at the excitation wavelength of 290 nm and emission wavelength of 545 nm.

atom% of Tb ³⁺ precursor	A ₁	τ ₁ /μs	A ₂	τ ₂ / μs
0.6	0.77	84.5	0.23	385
1.32	0.84	89.5	0.16	382
2.58	0.90	97.2	0.10	387
3.35	0.77	84.5	0.23	385

Note: All decays were analyzed by non linear curve fitting using origin 8.5 software.

Fig. S5 Fluorescence decays recorded for Eu³⁺ doped ZnO nanorods at the excitation wavelength of 290 nm and emission wavelength of 615 nm. Individual decay traces relate to different amount of Eu³⁺ precursors used for doping: 10 (black trace), 20 (red trace), 30 (green trace), and 40 weight% (blue trace).

Table S2. Fluorescence lifetimes (τ) and amplitude (A) recovered from fluorescence decays recorded for the solutions of ZnO nanorods with different Eu³⁺ content at the excitation wavelength of 290 nm and emission wavelength of 615 nm.

atom% of Eu ³⁺ precursor	A ₁	τ ₁ /μs	A ₂	τ ₂ / μs
0.4	0.88	70.5	0.12	301
1.05	0.96	70.9	0.04	280
2.17	0.84	51.1	0.16	266
3.12	0.82	55.0	0.18	311

Note: All decays were analyzed by non linear curve fitting using origin 8.5 software.

Table S3. Fluorescence lifetime (τ) and amplitude (A) recovered from fluorescence decays of 40

λ_{em}	A ₁	τ ₁ /ns	A ₂	τ₂/ns	<τ>/ns	χ²
520	0.25	5.02	0.75	39.03	41.0	1.10
540	0.65	5.1	0.36	40.1	43.8	1.07
580	0.22	6.35	0.78	43	45.2	1.02

weight% Tb³⁺ doped ZnO nanorods at different emission wavelengths.

Table S4. Fluorescence lifetime (τ) and amplitude (A) recovered from fluorescence decays of 40 weight% Eu³⁺ doped ZnO nanorods at different emission wavelengths.

λ_{em}	A ₁	τ_1/ns	A ₂	τ ₂ /ns	<τ>/ns	χ²
520	0.57	6.10	0.43	41.1	45.0	1.04
540	0.24	7.30	0.76	43.8	46.3	1.07
580	0.23	7.10	0.78	13.9	46.3	1.12