

Figure 1: Lignin content of Solution 1 permeate after XAD-4 resins cycling obtained by UV spectrometry at 280nm

Figure 2: Lignin content of solution 1 retentate (Fraction 2) after XAD-4 resins cycling obtained by UV spectrometry at 280nm

Figure 1-4: DSMO+0.5% LiBr SEC chromatograms of LCCs fractions

	Retention	M+	Fragments			Inter-units			
	time								bond
Monomers	5.14	194(10)	152(90)	137(100)					βΟ4
	5.52	208(10)	166(80)	151(100)					
	5.86	208(20)	166(80)	137(85)					
	6.76	206(10)	164(100)	149(35)					
	7.4	222(5)	180(30)	151(100)					
	9.51	266(10)	224(75)	164(100)	149(35)	137(65)			
Dimers	15.4	372(0.1)	330(20)	288(100)	259(40)				β1
	16.65	414(0.1)	372(25)	330(100)	315(30)	273(25)	150(18)	137(20)	55
	17.1	400(0.1)	358(20)	316(100)	287(20)	255(10)	241(8)		55
	17.43	414(0.1)	372(30)	330(100)	315(30)	301(10)	287(5)	259(10)	55
	17.64	414(0.1)	372(10)	330(100)	301(30)	269(10)	179(10)	150(55)	55
	18.24	414(0.1)	372(40)	330(100)	301(50)	269(10)	254(8)	227(5)	55
	18.62	358(1)	316(40)	274(50)	137(100)				β1
	19.52	386(1)	344(40)	302(60)	165(40)	137(100)			β5
	19.89	400(0.1)	358(50)	316(80)	179(50)	137(100)			β5
	20.18	414(0.1)	372(30)	330(10)	193(100)	137(20)			β5
	20.92	400(1)	358(60)	316(90)	179(60)	137(100)			β5
	21.51	356(20)	314(100)	285(15)					405

Table 1 Selected monomers and dimers fragments of fraction 5 GC MS spectra degraded by thioacidolysis and Raney-nickel desulphuration.

The mass (m_x) of uncondensed β O4 linkages have been calculated according to:

$$\frac{A_{IS}}{m_{IS}} = \frac{A_x}{m_x} R_f$$

Where A_{is} and m_{is} are the GC MS area and mass of internal standard respectively, R_f is the response factor and A_x is the area of the peaks belonging to a specific interunit linkage.

Figure 1: Response factor and structures of model compounds used for quantitative characterization of β O4(1 and 2) and dimers (3)

OCH₃ R_f=0.29

3,3'-dimethoxy-5,5'-dimethyl-[1,1'-biphenyl]-2,2'-diyl diacetate

To obtain the value in percentage,

$$\%_x = (\frac{m_x}{m_s}) \times 100$$

Where m_s it the mass of the lignin sample injected.

The percentage of β O4 accounts for only non-condensed etherified units in lignin and takes into consideration as thioacidolysis' yield 76% whereas the percentages of the other most common interunit linkages, namely β 1, 55, 4O5, β 5 and have been calculated using R_f=0.29 which has been obtained from 55 dimer model compound (Structure 3 in Figure 1)

Figure 1: HSQC 2D-NMR of acetylated phenyl mannopyranoside and model compounds.

Figure 2: HSQC 2D-NMR of acetylated phenyl β D glucopyranoside model compounds.

	Signal	δ _c	δ _H	Description
Lignin singnals	1_{α}	71.5	4.79	C_{α} -H $_{\alpha}$ in β O4
in DMSO- d_6	1 _β	84.4	4.29	C_{β} - H_{β} in β O4
	2_{α}	87.5	5.47	C_{α} - H_{α} in β 5
	2γ	62.1	3.82	C_{γ} - H_{γ} in β 5
	3_{α}	83.8	4.80	C_{α} - H_{α} in DBO
	Sβ	85.8	3.92	C_{β} - H_{β} in DBO
	3γ	60.4	3.42	C_{γ} -H _{γ} in DBO
	4_{β}	54.0	3.05	C_{β} - H_{β} in $\beta\beta$
	4γ	71.5	4.16	C_{γ} - H_{γ} in $\beta\beta$
	4γ	71	3.78	C_{γ} - H_{γ} in $\beta\beta$
	5α	82	5.05	C_{α} - H_{α} in SD
	5 _β	59.9	2.80	C_{β} - H_{β} in SD
	6 _α	129/129.3	6.28/6.47	C_{α} - H_{α} in Coniferyl Alchool
	6γ	62.0	4.10	C_{γ} - H_{γ} in Coniferyl Alchool
	7 _β	126.6	6.79	C_{β} -H $_{\beta}$ in Coniferyl Aldehyde
	8 _{C6}	122.1	7.65	α-C=0
	9	56.1	3.76	Methoxy

 Table 1: Assignment of main ¹³C-¹H 2D HSQC correlation signals from lignin compounds of original samples.

	Signal	δ _c	δ _H	Description
Acetylated	1_{α}	74.2	6.02	C_{α} -H _{α} in β O4
Lignin signals	1 _β	80.1	4.62	C_{β} -H _{β} in β O4
in CDCl ₃	2 _α	88.2	5.56	\dot{C}_{α} - \dot{H}_{α} in β 5
	2 _β	50.4	3.86	C_{γ} -H $_{\gamma}$ in β 5
	3 _β	82.1	4.21	C_{β} - H_{β} in DBO
	4_{β}	54.4	3.12	C_{β} - H_{β} in $\beta\beta$
	5 _α	81.5	5.11	C_{α} - H_{α} in SD
	5 _β	60	3.39	C_{β} - H_{β} in SD
	9	56.1	3.80	Methoxy

 Table 2: Assignment of main ¹³C-¹H 2D HSQC correlation signals from lignin compounds acetylated samples.

	Signal	δ _c	δ _H	Description
LCCs signals in	PG	99-104	4.8-5.3	Phenyl Glycoside
DMSO-d ₆	$BE_1(\alpha)$	80.1-81.2	4.21-4.68	Benzyl ether to C6/C5
	$BE_2(\alpha)$	81.7	5.04	Benzyl ether to C2/C3 in $lpha$
	γ-ester	62.7	4.31	γ-ester

Table 3: Assignment of main ¹³C-¹H 2D HSQC correlation signals from lignin carbohydrate signals of original samples.

	Signal	δ _c	δ_{H}	Description
Acetylated	PG(M)	99.1	5.41	Phenyl Glycoside to mannose
LCCs signals in	PG(Glu)	100.5	5.16	Phenyl Glycoside to glucose
in CDCl₃	$BE_1(\alpha)$	83.9	4.75	Benzyl ether to C6/C5
	$BE_1(C6)$	62.3	3.29	Benzyl ether to C6/C5
	$BE_2(\alpha)$	81.5	4.91-5.16	Benzyl ether to C2/C3 in $lpha$
	BE ₂ (C2-C3)	78.5	3.63	Benzyl ether to C2/C3 in xylan

 Table 4: Assignment of main ¹³C-¹H 2D HSQC correlation signals from lignin carbohydrate signals of acetylated samples.

Figure 1-4: 2D HSQC of Fraction 1-4 respectively in in d6-DMSO. In the figure M=Mannose, X=Xylan, Ga=Galactose, A=Arabinose, Gl=Glucose, Ar-C=Carbon in the aromatic, Ac=Acetylated, 40MeGA=40Methyl glucuronic acid, GU= Galacturonic acid. The subscript t stands for the carbohydrate terminal reducing end whereas the number in subscript indicates the carbon number either in the aromatic and sugar ring. In the right bottom corner it has been expanded and reported the aromatic region in the δ_H/δ_c area.

