Electronic Supplementary Information (ESI)

A Facile and Efficient Method for the Synthesis of Alkynone

by Carbonylative Sonogashira Coupling Using CHCI₃ as CO

Source

Guanglong Sun, Min Lei* and Lihong Hu*

State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. of China

> *E-mail: <u>mlei@simm.ac.cn</u> *E-mail: <u>lhhu@simm.ac.cn</u>

Table of Contents

1. General Information	S2
2. Select Optimization Results	S3
3. Experimental procedure and data for compounds	S7
4. Copies of NMR Spectra Data	S17

1. General Information

All reactions were performed in flame-dried glassware using sealed tube. Liquids and solutions were transferred with syringes. All solvents and chemical reagents were obtained from commercial sources and used without further purifications. ¹H and ¹³C NMR spectra were recorded with tetramethylsilane as an internal reference at 400 MHz and 101 MHz, respectively. Spectra were referenced to the residual solvent peak of CDCl₃ unless otherwise noted. Low and high-resolution mass spectra were obtained in the ESI mode. Flash column chromatography on silica gel (200-300 mesh) was used for the routine purification of reaction products. The column output was monitored by analytical thin-layer chromatography (TLC) on silica gel (100-200 mesh) precoated on glass plates (15 x 50 mm), and spots were visualized by ultraviolet light at 254 or 365 nm. Melting points were recorded on a WRS-1B melting point apparatus and are corrected. Commercially available chemicals were obtained from *Acros Organics, Strem Chemicals, Alfa Aesar, Adamas-beta, J&K and TCI*.

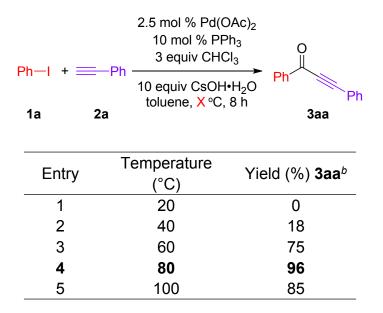

2. Select Optimization Results

Table S1. Time Screen.^a

Ph—I	+ <u>—</u> Ph	2.5 mol % 10 mol % 3 equiv	% PPh ₃	o L	
rn i	· m	10 equiv C		Ph ^r	1
1a	2a	toluene, 8	0°C, X n	3aa	
_					
_	Entry	Time (h)	Yield (%	6) 3aa ^b	
	1	1	60	C	
	2	2	7:	3	
	3	3	78	3	
	4	5	82	2	
	5	8	9	6	
_	6	12	90	6	

^aReaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), Pd(OAc)₂ (2.5 mol %), PPh₃ (10 mol %), CHCl₃ (1.5 mmol, 3 equiv), and CsOH·H₂O (5 mmol, 10 equiv) were stirred in toluene (3 mL) at 80 °C. ^{*b*}Yields were determined by LC-MS.

Table S2. Temperature Screen.^a

^aReaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), Pd(OAc)₂ (2.5 mol %), PPh₃ (10 mol %), CHCl₃ (1.5 mmol, 3 equiv), and CsOH·H₂O (5 mmol, 10 equiv) were stirred in toluene (3 mL) for 8 h. ^{*b*}Yields were determined by LC-

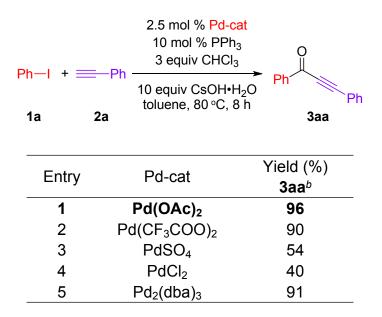

MS.

Table S3. Ligand Equivalencies Screen.^a

	h—l + ═	2.5 mol % Pd X mol % P 3 equiv Cl	Ph ₃ O HCl ₃
	1a	10 equiv CsC toluene, 80 ° 2a	
-	Entry	Ligand (mol %)) Yield (%) 3aa ^b
	1	0	15
	2	5	86
	3	10	96
	4	15	93
_	5	20	92

^aReaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), Pd(OAc)₂ (2.5 mol %), PPh₃ (X mol %), CHCl₃ (1.5 mmol, 3 equiv), and CsOH·H₂O (5 mmol, 10 equiv) were stirred in toluene (3 mL) at 80 °C for 8 h. ^{*b*}Yields were determined by LC-MS.

Table S4. Palladium Screen.^a

^aReaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), Pd-cat (2.5 mol %), PPh₃ (10 mol %), CHCl₃ (1.5 mmol, 3 equiv), and CsOH·H₂O (5 mmol, 10 equiv) were stirred in toluene (3 mL) at 80 °C for 8 h. ^{*b*}Yields were determined by LC-MS.

Table S5. Palladium Equivalencies Screen.^a

Ph—I + =	≡ —Ph	X mol % Pd(OA 10 mol % PPh 3 equiv CHCl	
1a	2a	10 equiv CsOH•h toluene, 80 °C, 8	
Entry	Pd(OAc) ₂ (mol %)	Yield (%) 3aa ^b
1		0	0
2		0.5	48
3		1.0	75
4		2.0	88
5		2.5	96
6		5.0	82

^aReaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), Pd(OAc)₂ (X mol %), PPh₃ (10 mol %), CHCl₃ (1.5 mmol, 3 equiv), and CsOH·H₂O (5 mmol, 10 equiv) were stirred stirred in toluene (3 mL) at 80 °C for 8 h. ^{*b*}Yields were determined by LC-MS.

Table S6. Base Screen.^a

Ph	_1 + ==-	2.5 mol % Pd(OA 10 mol % PPh ₃ 3 equiv CHCl ₃	³ 0
1	-	10 equiv Base toluene, 80 °C, 8	
	Entry	Base	Yield (%) 3aa ^b
-	1	TEA	0
	2	K ₂ CO ₃	0
	3	LiOH	0
	4	NaOH	25
	5	KOH	65
	6	CsOH.H₂O	96

^aReaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), Pd(OAc)₂ (2.5 mol %), PPh₃ (10 mol %), CHCl₃ (1.5 mmol, 3 equiv), and Base (5 mmol, 10 equiv)

were stirred in toluene (3 mL) at 80 °C for 8 h. ^bYields were determined by LC-MS.

Table S7. Base Equivalencies Screen.^a

Ph—I + ☰	2.5 mol % Pd(0 10 mol % PF 3 equiv CH0	Ph ₃ O Cl ₃ U
1a	X equiv CsOH toluene, 80 °C 2a	
Entry	Equiv CsOH∙H₂O	Yield (%) 3aa ^b
1	0	0
2	4	32
3	7	67
4	10	96
5	15	90
6	20	85

^aReaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), Pd(OAc)₂ (2.5 mol %), PPh₃ (10 mol %), CHCl₃ (1.5 mmol, 3 equiv), and CsOH·H₂O (**0.5X** mmol, **X** equiv) were stirred in toluene (3 mL) at 80 °C for 8 h. ^{*b*}Yields were determined by LC-MS.

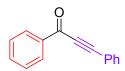
Table S8. CHCl₃ Equivalencies Screen.^a

Ph	_1 +	2.5 mol % Pd 10 mol % F X equiv CH		
1:		10 equiv CsO toluene, 80 %		`Ph
	Entry	Equiv CHCl ₃	Yield (%) 3aa ^b	_
	1	0	0	
	2	1	30	
	3	2	69	
	4	3	96	
	5	6	91	
	6	15	80	
	7	30	74	_

^aReaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), Pd(OAc)₂ (2.5 mol %), PPh₃ (10 mol %), CHCl₃ (**0.5X** mmol, **X** equiv), and CsOH·H₂O (**5** mmol, **10**

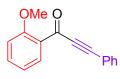
equiv) were stirred in toluene (3 mL) at 80 °C for 8 h. ^{*b*}Yields were determined by LC-MS.

Ph-	-X + <u></u> −Ph	2.5 mol % Pd(OAc) ₂ 10 mol % PPh ₃ 3 equiv CHCl ₃ 10 equiv CsOH•H ₂ O	Ph +	Ph	Ph
1	2a	toluene, 80 °C, 12 h	3aa	9	
-	Entry	Х	Yield (%) 3aa ^b	Yield (%) 9 ^b	
-	1	TsO-	0	70	
	2	TfO-	0	70	
	3	Br-	0	75	
	4	CI-	0	75	

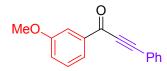

Table S9. Leaving groups studies.^a

^aReaction conditions: **1** (0.5 mmol), **2a** (0.6 mmol), $Pd(OAc)_2$ (2.5 mol %), PPh_3 (10 mol %), $CHCl_3$ (**1.5** mmol, **3** equiv), and $CsOH \cdot H_2O$ (**5** mmol, **10** equiv) were stirred in toluene (3 mL) at 80 °C for 12 h. ^bYields were determined by LC-MS.

3. Experimental procedure and data for compounds


General procedure for 3. In a flame-dried glassware, a 10 mL reaction vial equipped with a stir bar was charged with **1** (0.5 mmol, 1 equiv) and **2** (0.6 mmol, 1.2 equiv), $Pd(OAc)_2$ (3.0 mg, 2.5 mol %), PPh_3 (13.1 mg, 10 mol %), $CHCl_3$ (1.5 mmol, 3 equiv), $CsOH \cdot H_2O$ (5 mmol, 10 equiv) and toluene (3.0 mL). The reaction was then sealed, and heated to 80 °C with stirring until the starting material disappeared (by LC/MS). After cooled to room temperature, the reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10/1) as the eluent to afford the corresponding products **3**.

1,3-diphenylpropynone (3aa):

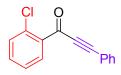

The product was obtained as a yellow solid in 91% yield; mp = 43-44 °C. ¹H **NMR** (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.0 Hz, 2H), 7.71 (d, *J* = 7.6 Hz, 2H), 7.64 (t, *J* = 7.2 Hz, 1H), 7.54 (t, *J* = 8.0 Hz, 2H), 7.49 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H). ¹³C **NMR** (101 MHz, CDCl₃) δ 178.0, 136.9, 134.1, 133.1 (2C), 130.8, 129.6 (2C), 128.7 (2C), 128.6 (2C), 120.1, 93.1, 86.9. **ESI-MS**: m/z 207.5 [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₅H₁₁O, 207.0804; found 207.0809.

1-(2-methoxyphenyl)-3-phenylprop-2-yn-1-one (3ba):

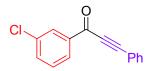
The product was obtained as a yellow solid in 90% yield; mp = 79-80 °C. ¹H **NMR** (400 MHz, CDCl₃) δ 8.10 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.71 (d, *J* = 7.6 Hz, 2H), 7.54-7.58 (m, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.03-7.09 (m, 2H), 3.98 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 176.7, 159.8, 135.1, 132.9 (2C), 132.6, 130.5, 128.6 (2C), 126.7, 120.6, 120.3, 112.2, 91.6, 89.2, 55.9. **ESI-MS** m/z 237.6, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₆H₁₃O₂, 237.0910; found 237.0904.

1-(3-methoxyphenyl)-3-phenylprop-2-yn-1-one (3ca):

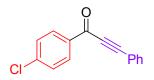
The product was obtained as a yellow solid in 91% yield; mp = 60-61 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 7.6 Hz, 1H), 7.69-7.72 (m, 3H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.41-7.46 (m, 3H), 7.19 (dd, *J* = 8.0, 2.4 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.7, 159.8, 138.2, 133.1 (2C), 130.8, 129.7, 128.7 (2C), 122.8, 120.9, 120.0, 112.8, 93.0, 87.0, 55.4. ESI-MS m/z 237.6, [M+H]⁺; HRMS (ESI): [M+H]⁺ calculated for C₁₆H₁₃O₂, 237.0910; found 237.0904.


1-(4-methoxyphenyl)-3-phenylprop-2-yn-1-one (3da):

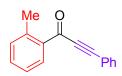
The product was obtained as a white solid in 93% yield; mp = 93-94 °C. ¹H


NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.8 Hz, 2H), 7.69 (d, *J* = 7.2 Hz, 2H), 7.50 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.2 Hz, 2H), 7.01 (d, *J* = 8.8 Hz, 2H), 3.92 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 176.6, 164.5, 132.9 (2C), 132.0 (2C), 130.6, 130.3, 128.6 (2C), 120.3, 113.9 (2C), 92.3, 86.9, 55.6. **ESI-MS** m/z 237.6, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₆H₁₃O₂, 237.0910; found 237.0915.

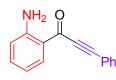
1-(2-chlorophenyl)-3-phenylprop-2-yn-1-one (3ea):


The product was obtained as a yellow solid in 82% yield; mp = 101-102 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 7.6 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.48-7.52 (m, 3H), 7.41-7.45 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.8, 135.8, 133.5, 133.4, 133.1 (2C), 132.6, 131.5, 131.0, 128.7 (2C), 126.8, 120.0, 93.9, 88.3. **ESI-MS** m/z 241.6, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₅H₁₀ClO, 241.0415; found 241.0420.

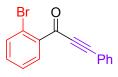
1-(3-chlorophenyl)-3-phenylprop-2-yn-1-one (3fa):


The product was obtained as a yellow solid in 88% yield; mp = 89-90 °C. ¹H **NMR** (400 MHz, CDCl₃) δ 8.20 (t, *J* = 1.6 Hz, 1H), 8.13 (dt, *J* = 8.0, 1.2 Hz, 1H), 7.72 (dt, *J* = 7.2, 1.6 Hz, 2H), 7.63 (dq, *J* = 8.0, 1.2 Hz, 1H), 7.44-7.55 (m, 4H). ¹³C **NMR** (101 MHz, CDCl₃) δ 176.5, 138.3, 134.9, 134.0, 133.1 (2C), 131.1, 130.0, 129.4, 128.7 (2C), 127.7, 119.7, 93.9, 86.5. **ESI-MS** m/z 241.6, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₅H₁₀ClO, 241.0415; found 241.0413.

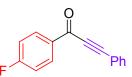
1-(4-chlorophenyl)-3-phenylprop-2-yn-1-one (3ga):


The product was obtained as a yellow solid in 89% yield; mp = 105-106 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (dt, *J* = 8.4, 2.4 Hz, 2H), 7.71 (dt, *J* = 7.2, 1.6 Hz, 2H), 7.51-7.55 (m, 1H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.45 (t, *J* = 7.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 176.6, 140.7, 135.3, 133.1 (2C), 131.0, 130.8 (2C), 129.0 (2C), 128.7 (2C), 119.8, 93.6, 86.6. ESI-MS m/z 241.6, [M+H]⁺; HRMS (ESI): [M+H]⁺ calculated for C₁₅H₁₀ClO, 241.0415; found 241.0410.

1-(2-methylphenyl)-3-phenylprop-2-yn-1-one (3ha):

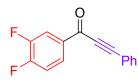

The product was obtained as a light yellow solid in 90% yield; mp = 71-72 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.71 (dt, *J* = 7.2, 1.2 Hz, 2H), 7.47-7.51 (m, 2H), 7.37-7.45 (m, 3H), 7.29 (d, *J* = 8.0 Hz, 1H), 2.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.8, 140.5, 135.7, 133.2, 132.9 (2C), 132.2, 130.6, 130.2, 128.6 (2C), 125.9, 120.3, 91.8, 88.3, 21.9. **ESI-MS** m/z 221.6, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₆H₁₃O, 221.0961; found 221.0966.

1-(2-aminophenyl)-3-phenylprop-2-yn-1-one (3ia):

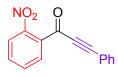

The product was obtained as a orange solid in 80% yield; mp = 63-64 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.71 (dt, *J* = 6.8, 1.6 Hz, 2H), 7.41-7.50 (m, 3H), 7.32-7.36 (m, 1H), 6.73-6.77 (m, 1H), 6.69 (d, *J* = 8.0 Hz, 1H), 6.42 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 179.5, 151.1, 135.3, 134.4, 132.8 (2C), 130.4, 128.6 (2C), 120.5, 118.8, 116.8, 116.1, 92.3, 87.1. **ESI-MS**: m/z 222.6 [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₅H₁₂NO, 222.0913; found 222.0919.

1-(2-bromophenyl)-3-phenylprop-2-yn-1-one (3ja):

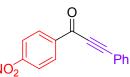
The product was obtained as a yellow solid in 80% yield; mp = 104-105 °C. ¹H **NMR** (400 MHz, CDCl₃) δ 8.10 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.72 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.66 (d, *J* = 7.6 Hz, 2H), 7.38-7.52 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 177.5, 137.5, 134.9, 133.4, 133.1 (2C), 132.7, 131.0, 128.7 (2C), 127.4, 121.2, 119.9, 94.2, 87.9. **ESI-MS** m/z 285.4, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₅H₁₀BrO, 284.9910; found 284.9918.


1-(4-fluorophenyl)-3-phenylprop-2-yn-1-one (3ka):

The product was obtained as a yellow solid in 87% yield; mp = 60-62 °C. ¹H

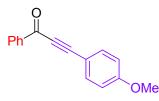

NMR (400 MHz, CDCl₃) δ 8.25-8.29 (m, 2H), 7.71 (d, *J* = 7.2 Hz, 2H), 7.52 (t, *J* = 7.2 Hz, 1H), 7.46 (t, *J* = 7.2 Hz, 2H), 7.21 (t, *J* = 8.4 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 176.3, 167.7 and 165.1 (d, ¹*J*_{CF} = 255.0 Hz, 1C), 133.4 and 133.4 (d, ⁴*J*_{CF} = 2.2 Hz, 1C), 133.0 (2C), 132.3 and 132.2 (d, ³*J*_{CF} = 9.6 Hz, 2C), 130.9, 128.7 (2C), 119.9, 115.9 and 115.7 (d, ²*J*_{CF} = 21.9 Hz, 2C), 93.3, 86.6. **ESI-MS** m/z 225.6, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₅H₁₀FO, 225.0710; found 225.0714.

1-(3,4-difluorophenyl)-3-phenylprop-2-yn-1-one (3la):


The product was obtained as a yellow solid in 88% yield; mp = 118-119 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01-8.06 (m, 2H), 7.71 (d, *J* = 7.2 Hz, 2H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.46 (t, *J* = 7.2 Hz, 2H), 7.30-7.37 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 155.7 and 155.5 and 153.1 and 153.0 (dd, ¹*J*_{*CF*} = 257.2, 12.9 Hz, 1C), 151.7 and 151.5 and 149.2 and 149.1 (dd, ¹*J*_{*CF*} = 249.9, 13.2 Hz, 1C), 134.0 and 134.0 and 133.9 (dd, ³*J*_{*CF*} = 7.4, 3.6 Hz, 1C), 133.1 (2C), 131.1, 128.7 (2C), 126.7 and 126.7 and 126.7 and 126.6 (dd, ³*J*_{*CF*} = 7.7, 3.5 Hz, 1C), 118.5 and 118.4 and 118.3 and 118.3 (dd, ²*J*_{*CF*} = 18.3, 1.4 Hz, 1C), 117.7 and 117.7 and 117.5 and 117.5 (dd, ²*J*_{*CF*} = 17.9, 1.0 Hz, 1C), 94.0, 88.2. **ESI-MS** m/z 243.5, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₅H₉F₂O, 243.0616; found 243.0621.

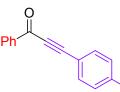
1-(2-nitrophenyl)-3-phenylprop-2-yn-1-one (3ma):

The product was obtained as a yellow solid in 78% yield; mp = 143-144 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.72 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.59-7.63 (m, 3H), 7.47 (td, *J* = 7.6, 1.2 Hz, 1H), 7.38-7.42 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.3, 149.5, 134.6, 132.8, 132.0 (2C), 129.2, 128.6, 128.5 (2C), 124.7, 122.4, 118.7, 97.1, 84.8. **ESI-MS** m/z 252.5, [M+H]⁺; HRMS (ESI): [M+H]⁺ calculated for C₁₅H₁₀NO₃, 252.0655; found 252.0650.

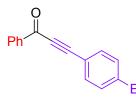

1-(4-nitrophenyl)-3-phenylprop-2-yn-1-one (3na):

The product was obtained as a yellow solid in 84% yield; mp = 161-162 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.37-8.42 (m, 4H), 7.73 (d, *J* = 7.2 Hz, 2H), 7.56 (t,

J = 7.2 Hz, 1H), 7.48 (t, *J* = 7.2 Hz, 2H). ¹³**C** NMR (101 MHz, CDCl₃) δ 175.8, 150.8, 141.0, 133.3 (2C), 131.4, 130.4 (2C), 128.8 (2C), 123.8 (2C), 119.4, 95.4, 86.5. **ESI-MS** m/z 252.5, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for $C_{15}H_{10}NO_3$, 252.0655; found 252.0659.

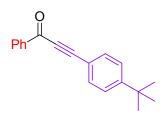

1-phenyl-3-(4-methoxyphenyl)prop-2-yn-1-one (3ab):

The product was obtained as a yellow solid in 92% yield; mp = 80-81 °C. ¹H **NMR** (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.0 Hz, 2H), 7.62-7.69 (m, 3H), 7.54 (t, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.8 Hz, 2H), 3.88 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 178.0, 161.7, 137.0, 135.1 (2C), 133.9, 129.5 (2C), 128.5 (2C), 114.4 (2C), 111.8, 94.3, 86.9, 55.4. **ESI-MS** m/z 237.6, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₆H₁₃O₂, 237.0910; found 237.0905.

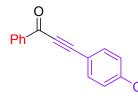

1-phenyl-3-(4-methylphenyl)prop-2-yn-1-one (3ac):

Me

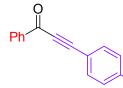
The product was obtained as a yellow solid in 88% yield; mp = 69-70 °C. ¹H **NMR** (400 MHz, CDCl₃) δ 8.24 (d, *J* = 7.6 Hz, 2H), 7.65 (t, *J* = 7.2 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.54 (d, *J* = 7.6 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 2.43 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 178.0, 141.6, 136.9, 134.0, 133.1 (2C), 129.6 (2C), 129.5 (2C), 128.6 (2C), 117.0, 93.8, 86.8, 21.8. **ESI-MS** m/z 221.6, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₆H₁₃O, 221.0961; found 221.0966.


1-phenyl-3-(4-ethylphenyl)prop-2-yn-1-one (3ad):

The product was obtained as a yellow solid in 90% yield; mp = 77-78 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 7.6 Hz, 2H), 7.63-7.67 (m, 3H), 7.54 (t, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 2.72 (q, *J* = 7.6 Hz, 2H), 1.28 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.0, 147.8, 137.0, 134.0, 133.2 (2C), 129.5 (2C), 128.6 (2C), 128.3 (2C), 117.2, 93.9, 86.8, 29.0, 15.2. **ESI-MS** m/z 235.6, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₇H₁₅O, 235.1117;


found 235.11121.

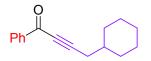
1-phenyl-3-(4-tert-butylphenyl)prop-2-yn-1-one (3ae):


The product was obtained as a yellow solid in 91% yield; mp = 90-92 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 7.6 Hz, 2H), 7.63-7.67 (m, 3H), 7.54 (t, *J* = 7.6 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 1.37 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 178.1, 154.6, 137.0, 134.0, 133.0 (2C), 129.5 (2C), 128.6 (2C), 125.7 (2C), 117.0, 93.8, 86.7, 35.1, 31.0 (3C). ESI-MS m/z 263.6, [M+H]⁺; HRMS (ESI): [M+H]⁺ calculated for C₁₉H₁₉O, 263.1430; found 263.1435.

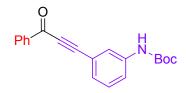
1-phenyl-3-(4-chlorophenyl)prop-2-yn-1-one (3af):


The product was obtained as a white solid in 86% yield; mp = 106-107 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.0 Hz, 2H), 7.63-7.69 (m, 3H), 7.55 (t, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 177.7, 137.2, 136.7, 134.2 (3C), 129.5 (2C), 129.1 (2C), 128.7 (2C), 118.5, 91.6, 87.6. **ESI-MS** m/z 241.6, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₅H₁₀ClO, 241.0415; found 241.0410.

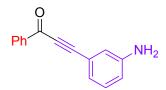
1-phenyl-3-(4-fluorophenyl)prop-2-yn-1-one (3ag):


The product was obtained as a yellow solid in 87% yield; mp = 78-79 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.25-8.29 (m, 2H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.43-7.54 (m, 3H), 7.21 (t, *J* = 8.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 177.9, 165.3 and 162.7 (d, ¹*J*_{CF} = 252.2 Hz, 1C), 136.8 and 133.4 (d, ³*J*_{CF} = 8.9 Hz, 2C), 134.2, 129.5 (2C), 128.6 (2C), 116.3 and 116.1 (d, ²*J*_{CF} = 22.2 Hz, 2C), 116.2 and 116.2 (d, ⁴*J*_{CF} = 3.6 Hz, 1C), 92.0, 86.8. **ESI-MS** m/z 225.5, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₅H₁₀FO, 225.0710; found 225.0716.

1-phenyl-3-(4-nitrophenyl)prop-2-yn-1-one (3ah):


The product was obtained as an orange solid in 89% yield; mp = 147-148 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 8.8 Hz, 2H), 8.22 (d, *J* = 7.6 Hz, 2H), 7.86 (d, *J* = 8.8 Hz, 2H), 7.69 (t, *J* = 7.6 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 177.4, 148.5, 136.3, 134.7, 133.6 (2C), 129.6 (2C), 128.8 (2C), 126.8, 123.8 (2C), 89.8, 89.2. **ESI-MS** m/z 252.5, [M+Na]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₅H₁₀NO₃, 252.0655; found 252.0660.

1-phenyl-4-cyclohexyl-2-butin-1-one (3ai):


The product was obtained as a yellow liquid in 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 7.2 Hz, 2H), 7.61 (t, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 2.42 (d, *J* = 6.8 Hz, 2H), 1.67-1.92 (m, 5H), 1.10-1.32 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 178.3, 136.9, 133.8, 129.5 (2C), 128.5 (2C), 96.0, 80.6, 36.9, 32.8 (2C), 26.9, 26.1, 26.0 (2C). **ESI-MS** m/z 227.6, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₆H₁₉O, 227.1430; found 227.1436.

1-(3-methoxyphenyl)-3-phenylprop-2-yn-1-one (3aj):

The product was obtained as a yellow solid in 86% yield; mp = 77-78 °C. ¹H **NMR** (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.0 Hz, 2H), 7.77 (s, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 2H), 7.46-7.49 (m, 1H), 7.33-7.39 (m, 2H), 6.61 (s, 1H), 1.55 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 178.0, 152.5, 138.8, 136.8, 134.1, 129.6 (2C), 129.3, 128.6 (2C), 127.6, 122.3, 120.8, 120.7, 92.9, 86.7, 81.0, 28.3 (3C). **ESI-MS** m/z 322.6, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₂₀H₂₀NO₃, 322.1438; found 322.1444.

1-(3-methoxyphenyl)-3-phenylprop-2-yn-1-one (3ak):

The product was obtained as a yellow solid in 81% yield; mp = 60-61 °C. ¹H

NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 7.6 Hz, 2H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.09-7.11 (m, 1H), 6.99 (t, *J* = 1.6 Hz, 1H), 6.80-6.82 (m, 1H), 3.83 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 178.1, 146.6, 136.9, 134.1, 129.7 (2C), 129.6, 128.6 (2C), 123.3, 120.7, 118.8, 117.7, 93.8, 86.3. **ESI-MS** m/z 222.6, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₅H₁₂NO, 222.0913; found 222.0908.

General procedure for 7 and 8. In a flame-dried glassware, a 10 mL reaction vial equipped with a stir bar was charged with **5** or **6** (0.5 mmol, 1 equiv) and **2a** (0.6 mmol, 1.2 equiv), $Pd(OAc)_2$ (3.0 mg, 2.5 mol %), PPh_3 (13.1 mg, 10 mol %), $CHCl_3$ (1.5 mmol, 3 equiv), $CsOH \cdot H_2O$ (5 mmol, 10 equiv) and toluene (3.0 mL). The reaction was then sealed, and heated to 80 °C with stirring for 12 h. After cooled to room temperature, the reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3/1) as the eluent to afford the corresponding products **7** or **8**.

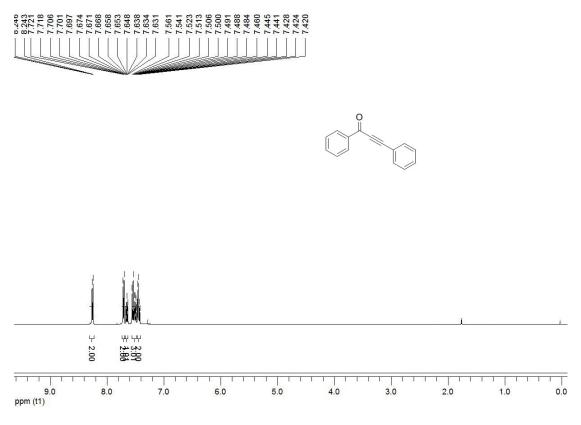
15-phenylethynylvindoline (7):

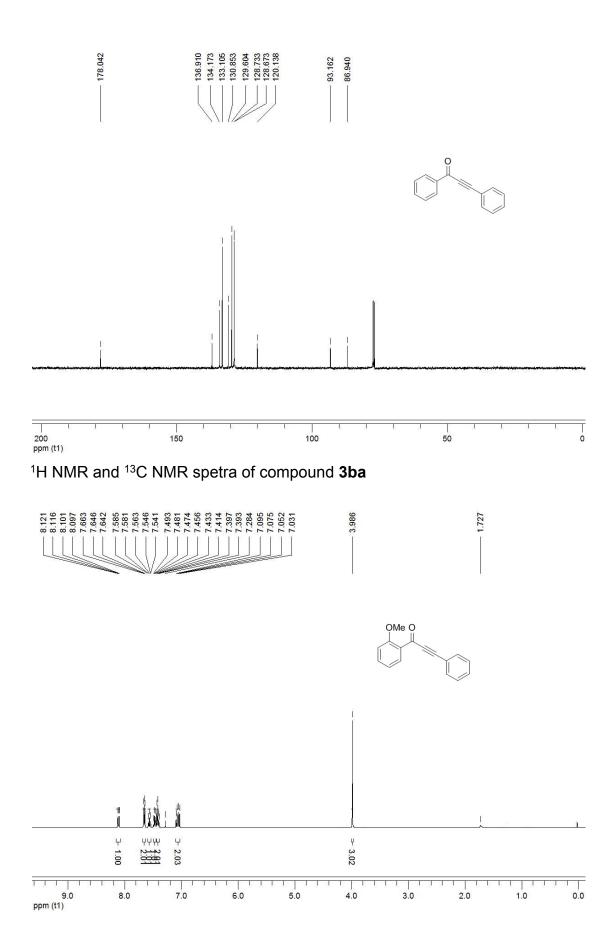
The product was obtained as a yellow solid in 79% yield; mp = 137-138 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.74 (s, 1H), 7.81 (s, 1H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.37-7.45 (m, 3H), 5.99 (s, 1H), 5.89 (dd, *J* = 10.0, 4.0 Hz, 1H), 5.36 (s, 1H), 5.28 (d, *J* = 10.0 Hz, 1H), 3.99 (s, 3H), 3.97 (s, 1H), 3.81 (s, 3H), 3.42-3.53 (m, 2H), 2.83-2.90 (m, 5H), 2.59-2.66 (m, 1H), 2.30-2.35 (m, 2H), 2.08 (s, 3H), 1.59-1.68 (m, 1H), 1.09-1.18 (m, 1H), 0.57 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 171.7, 170.6, 164.0, 157.9, 132.7 (2C), 130.1, 129.9, 128.5 (2C), 126.2, 124.9, 124.3, 121.5, 117.8, 90.9, 90.5, 90.1, 83.1, 79.3, 75.9, 66.5, 55.9, 52.4, 52.2, 51.3, 50.8, 43.7, 42.8, 36.3, 31.0, 21.0, 7.5. ESI-MS m/z 585.8, [M+H]⁺; HRMS (ESI): [M+H]⁺ calculated for C₃₄H₃₇N₂O₇, 585.2595; found 585.2606.

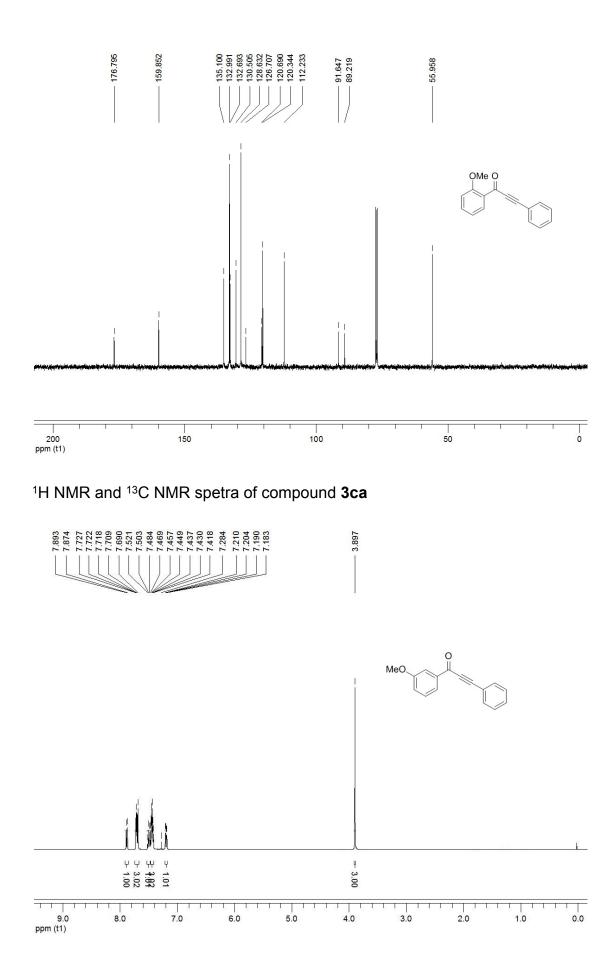
10-phenylethynyltabersonine (8):

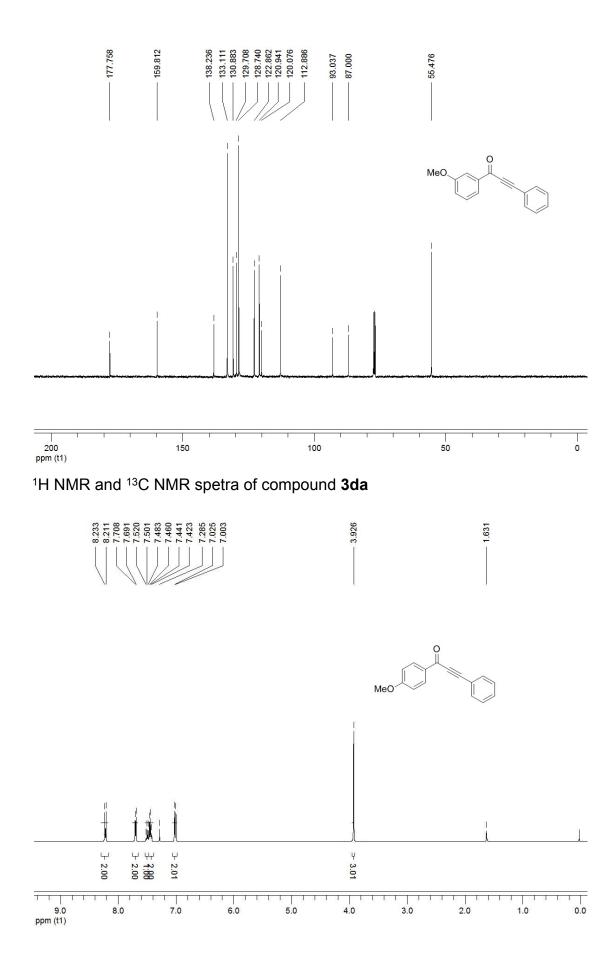
The product was obtained as a yellow solid in 75% yield; mp = 116-117 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 9.35 (s, 1H), 8.19 (dd, *J* = 8.4, 1.2 Hz, 1H), 8.08 (d, *J* = 1.2 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.38-7.52 (m, 4H), 6.91 (d, *J* = 8.4 Hz, 1H), 5.83 (dd, *J* = 10.0, 4.4 Hz, 1H), 5.72 (d, *J* = 10.0 Hz, 1H), 3.81 (s, 3H), 3.51 (dd, *J* = 16.0, 4.8 Hz, 1H), 3.25 (d, *J* = 16.0 Hz, 1H), 3.09 (t, *J* = 8.0 Hz, 1H), 2.78-2.84 (m, 2H), 2.59 (dd, *J* = 15.2, 1.6 Hz, 1H), 2.49 (d, *J* = 15.2 Hz, 1H), 2.05-2.13 (m, 1H), 1.84 (dd, *J* = 11.6, 4.4 Hz, 1H), 0.97-1.03 (m, 1H), 0.85-0.92 (m, 1H), 0.66 (t, *J* = 7.6 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 176.6, 168.7, 164.9, 148.6, 138.6, 133.1, 132.9 (2C), 132.5, 130.5, 128.6 (2C), 125.1, 121.8, 120.4, 108.5, 95.3, 92.2, 87.1, 69.8, 54.4, 51.3, 50.9, 50.5, 44.7, 41.3, 28.5, 26.9, 7.5. **ESI-MS** ((m/z) 465.7, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₃₀H₂₉N₂O₃, 465.2173; found 465.2184.

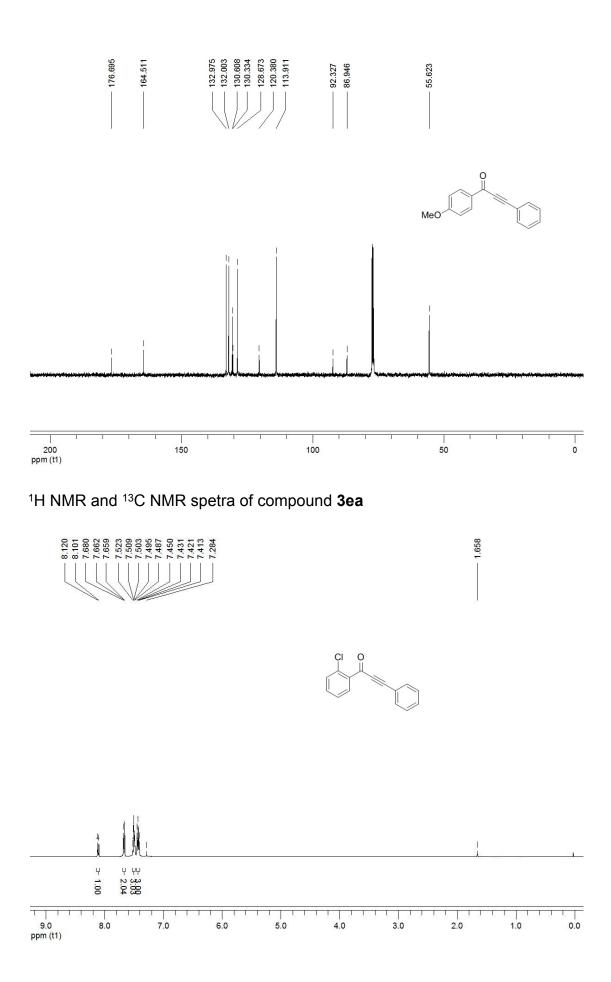
diphenylbutadiyne (9):

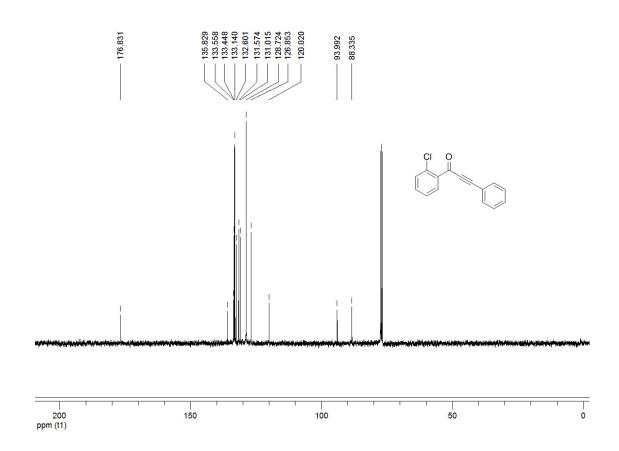

Ph

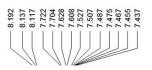

Ph.

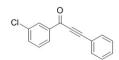

The product was obtained as a yellow solid in 70% yield; mp = 87-88 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, *J* = 8.0, 1.6 Hz, 4H), 7.34-7.42 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 132.5 (4C), 129.2 (2C), 128.4 (4C), 121.8 (2C), 81.5 (2C), 73.9 (2C). **ESI-MS** m/z 203.6, [M+H]⁺; **HRMS** (ESI): [M+H]⁺ calculated for C₁₅H₁₁, 203.0855; found 203.0859.

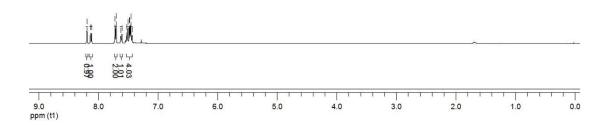

4. Copies of NMR Spectra Data

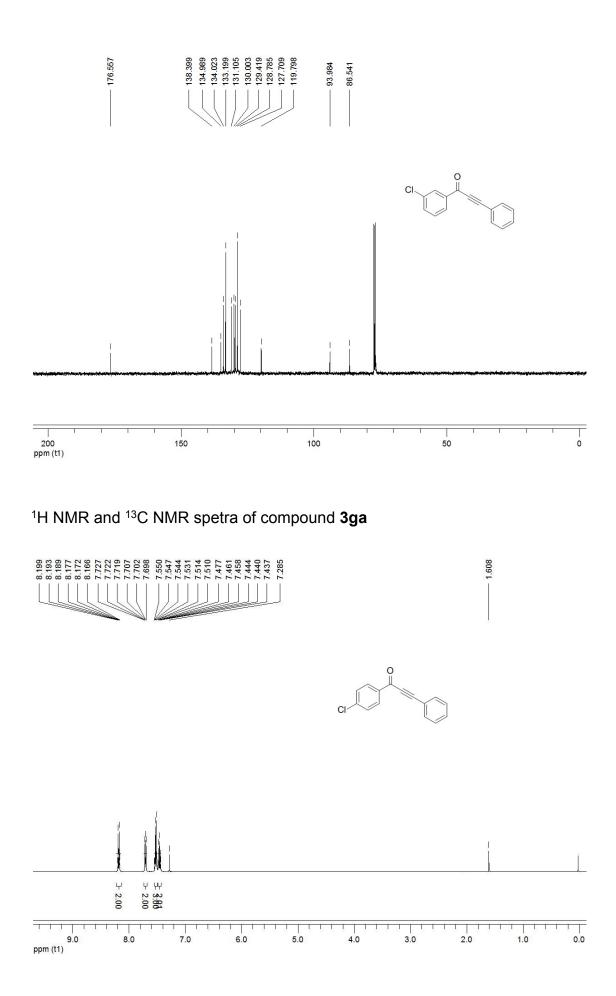

¹H NMR and ¹³C NMR spetra of compound **3aa**



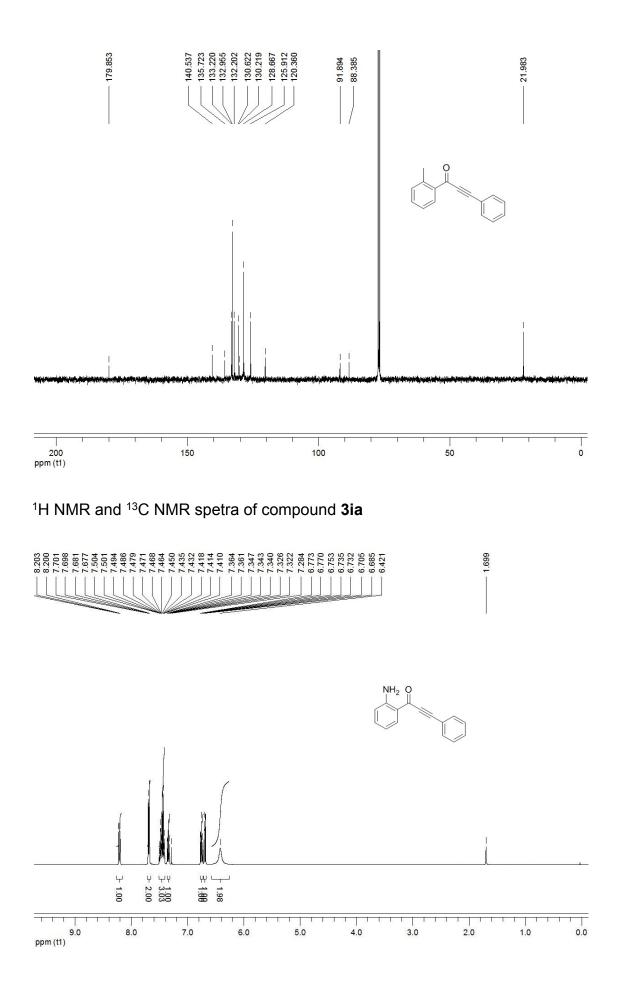


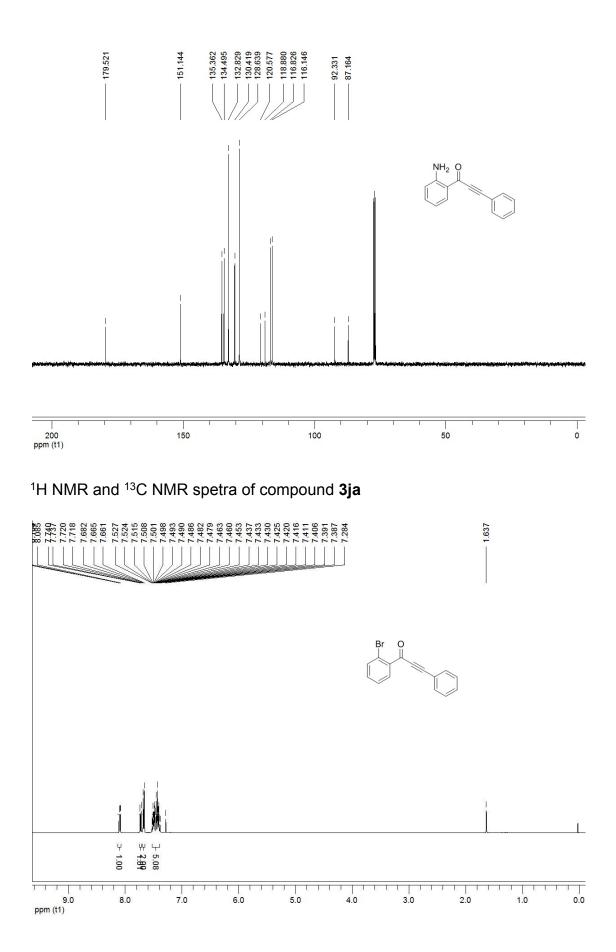


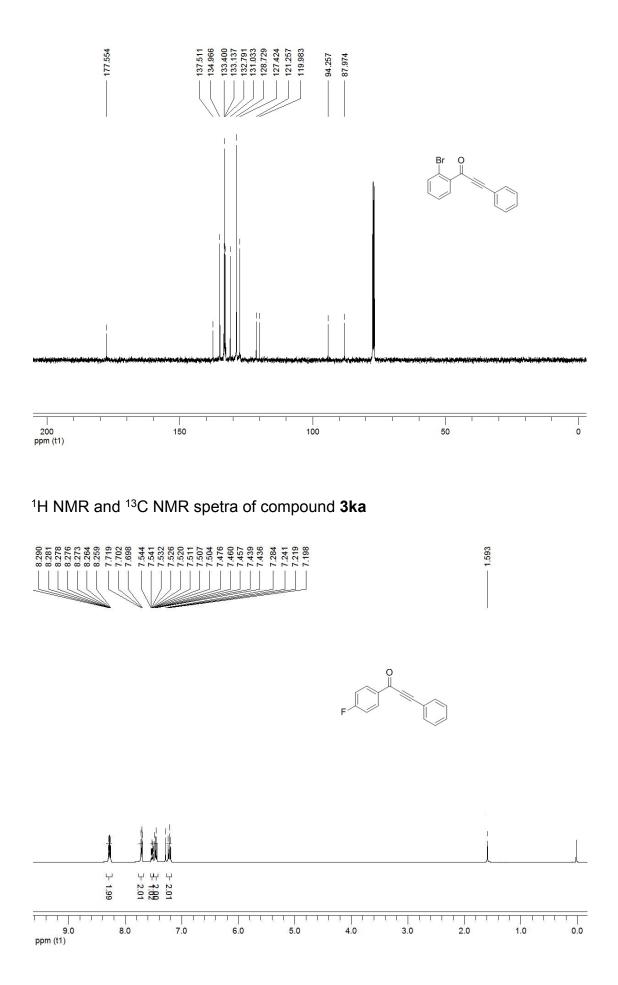


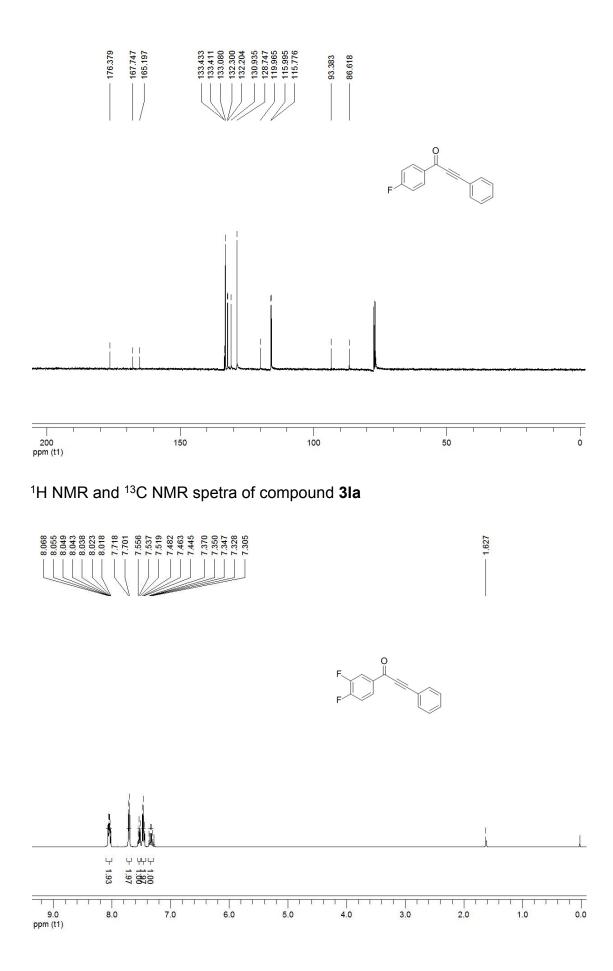


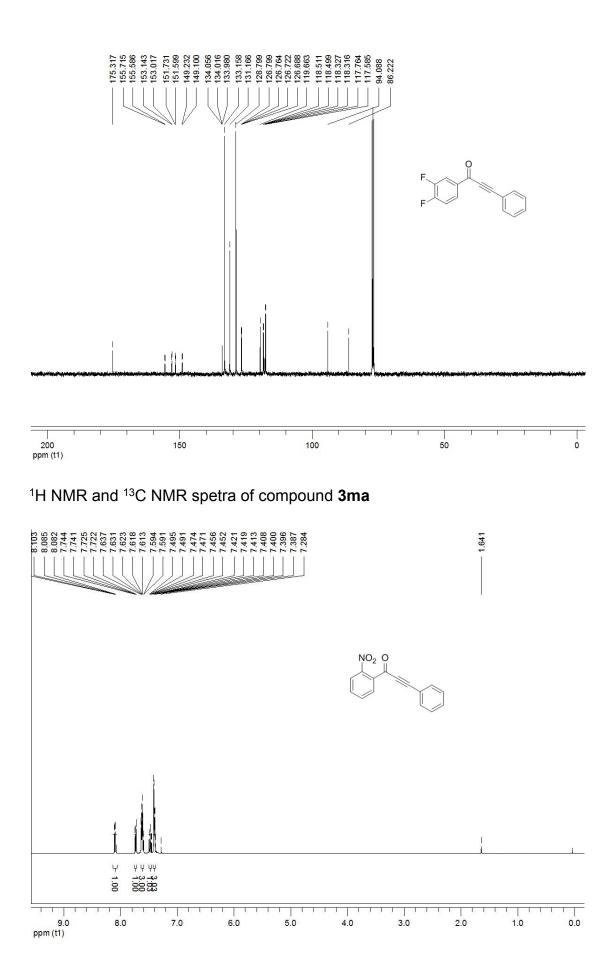
¹H NMR and ¹³C NMR spetra of compound **3fa**

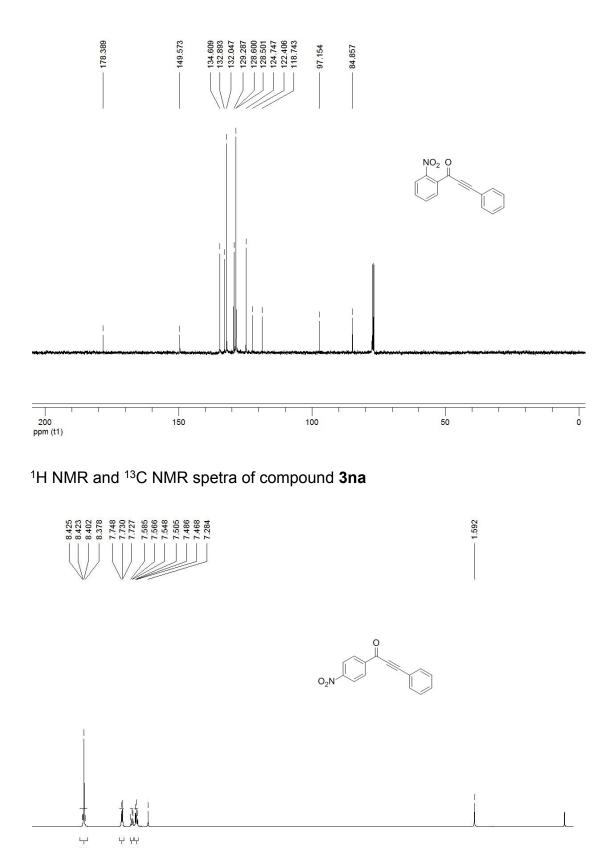


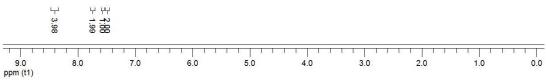


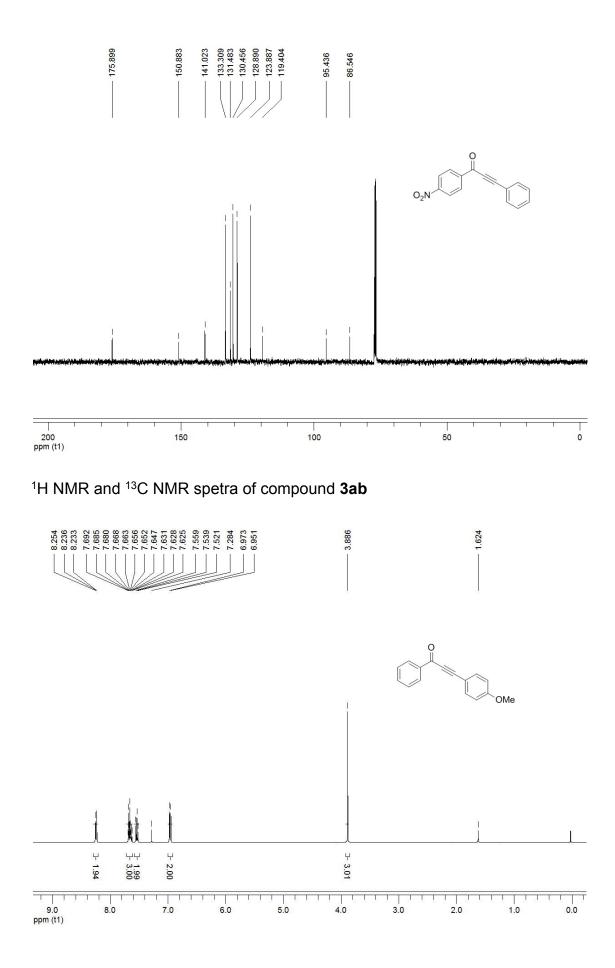


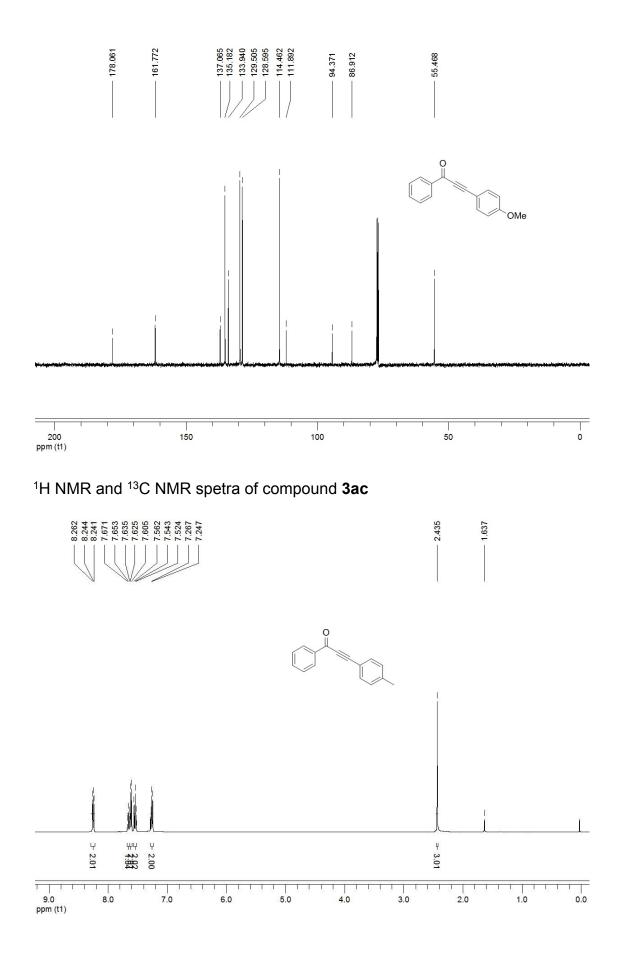


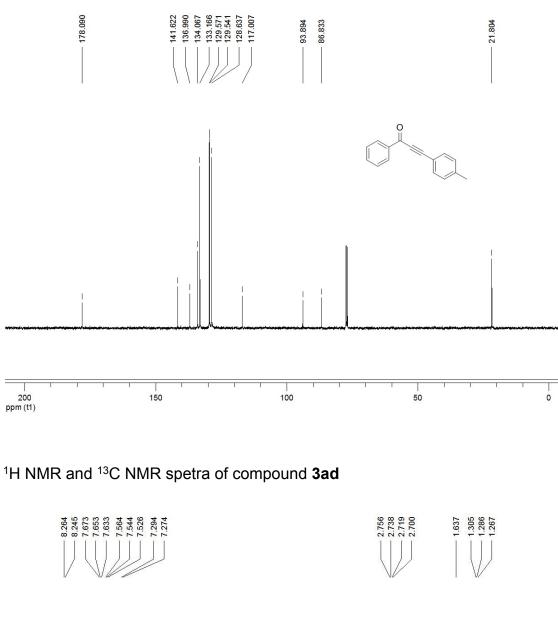


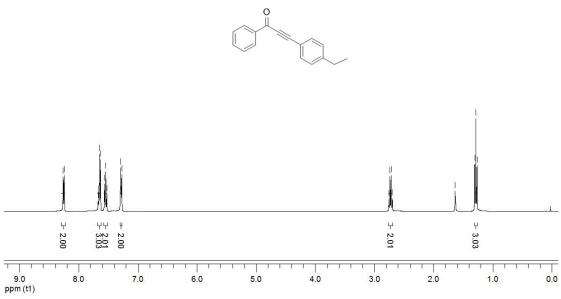


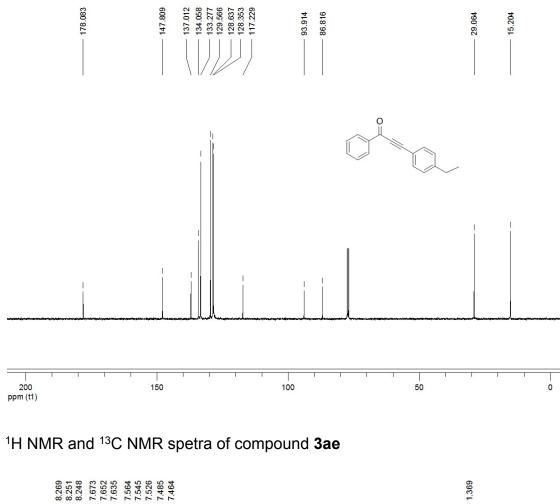


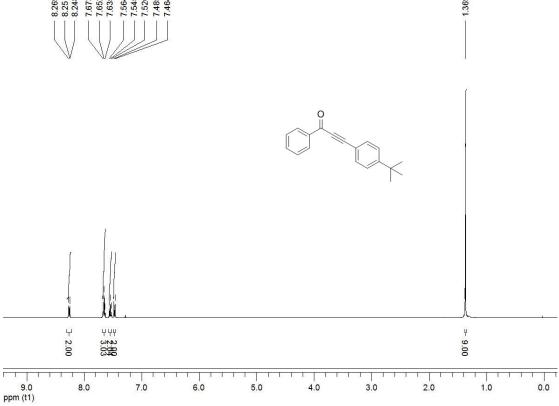




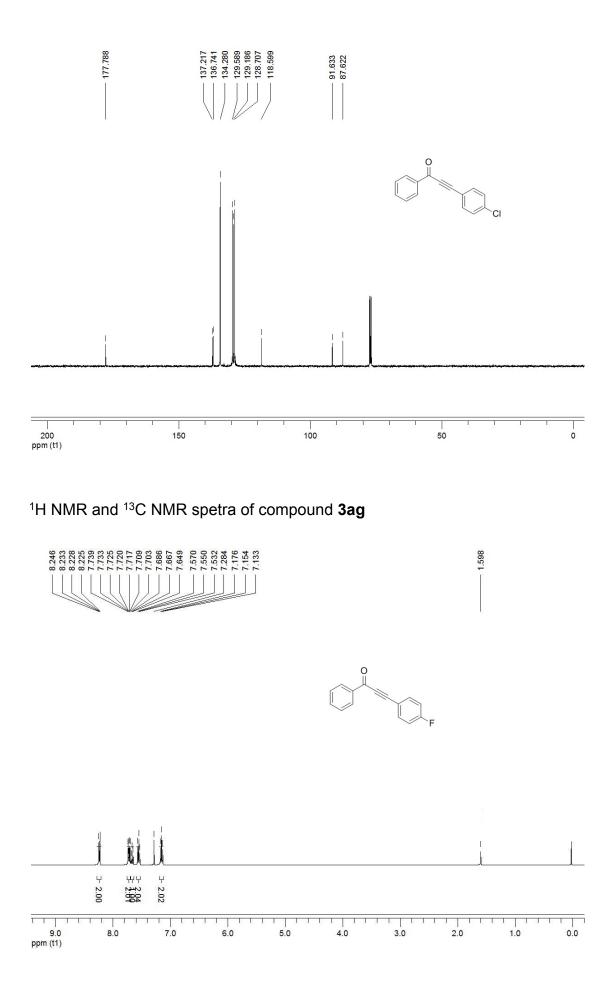


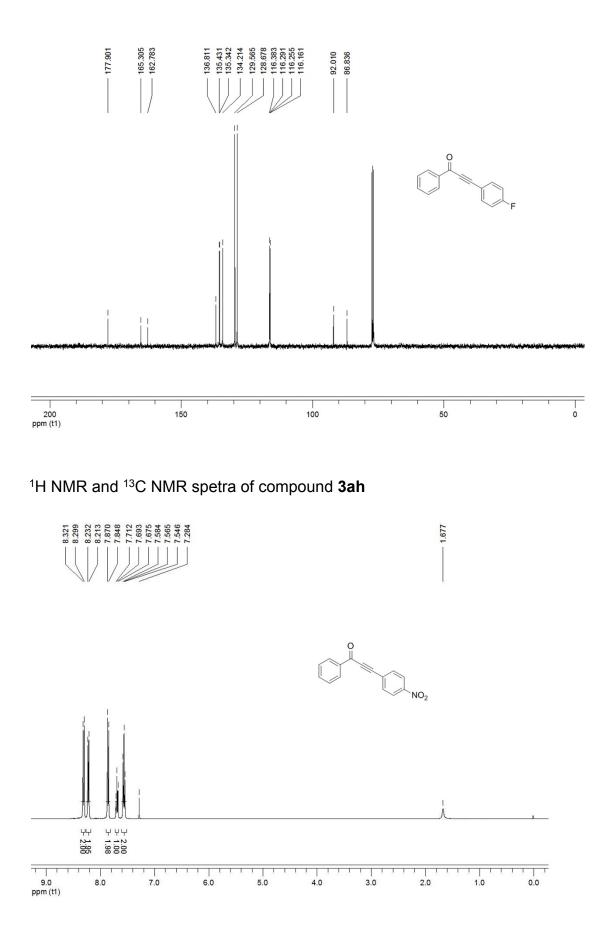


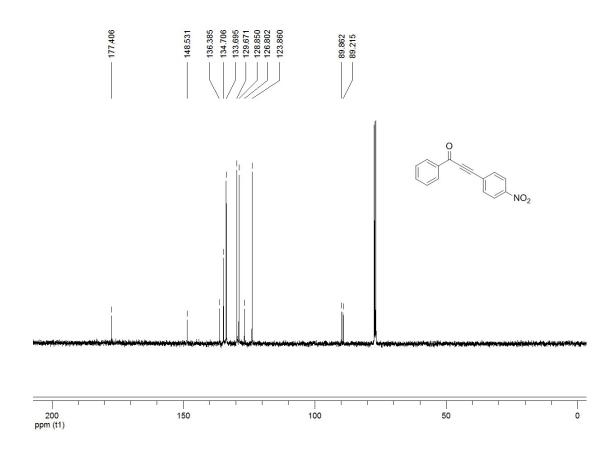




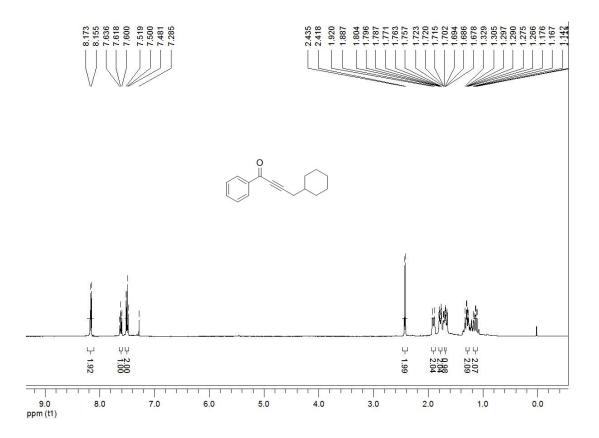


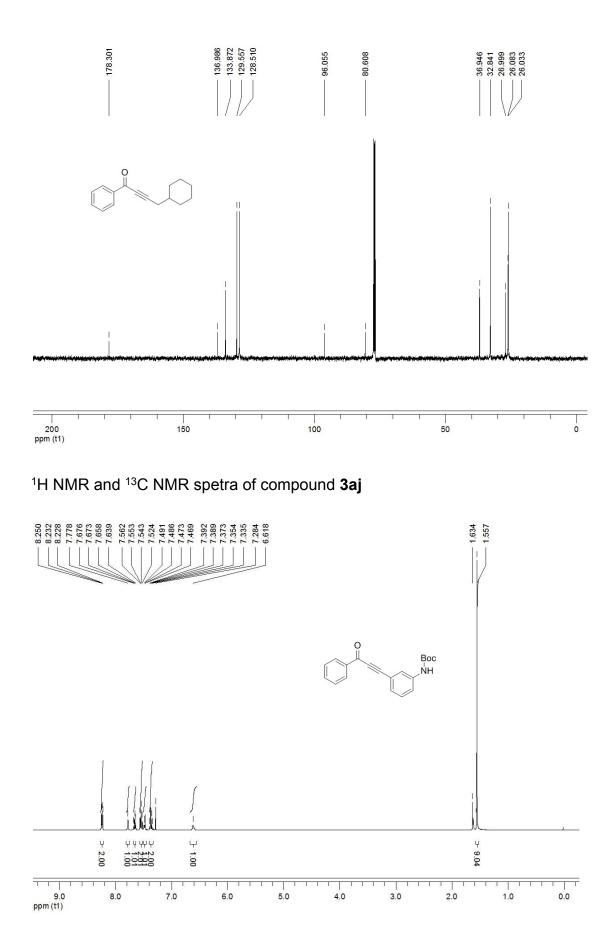


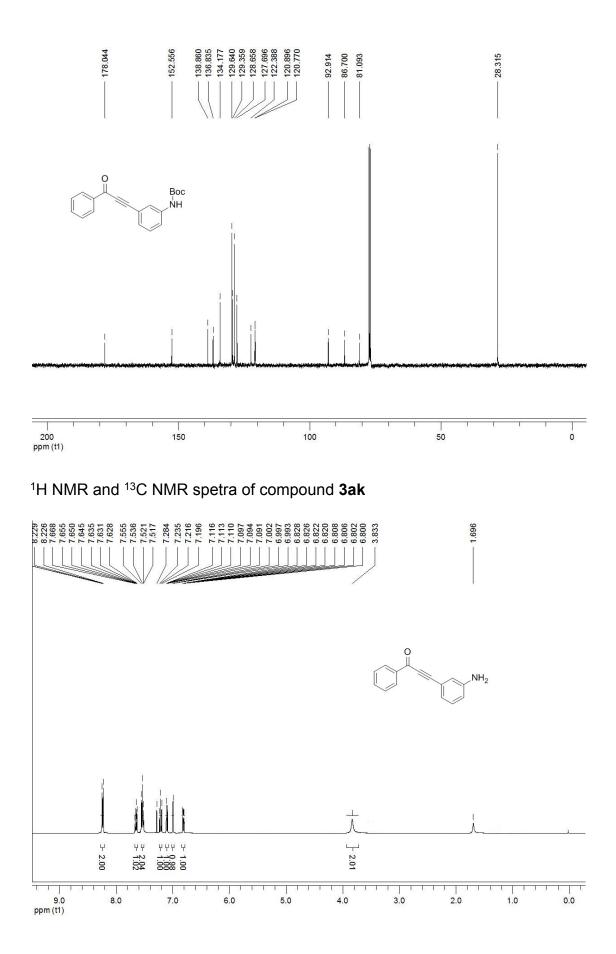


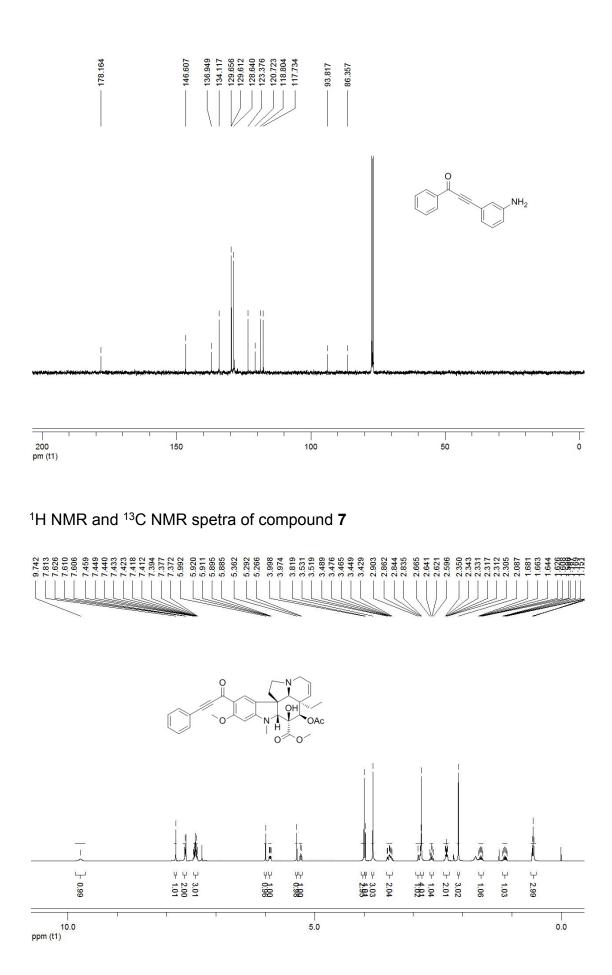


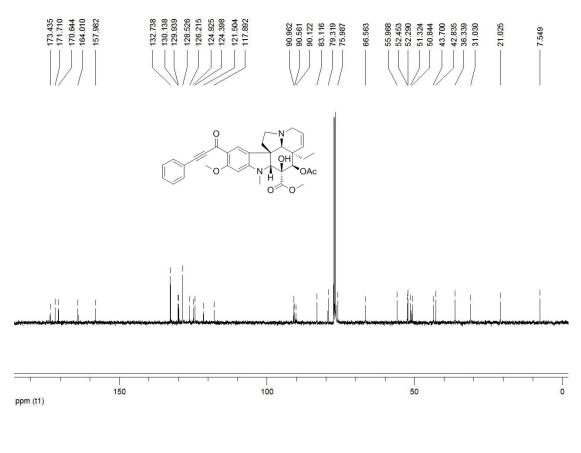
S35

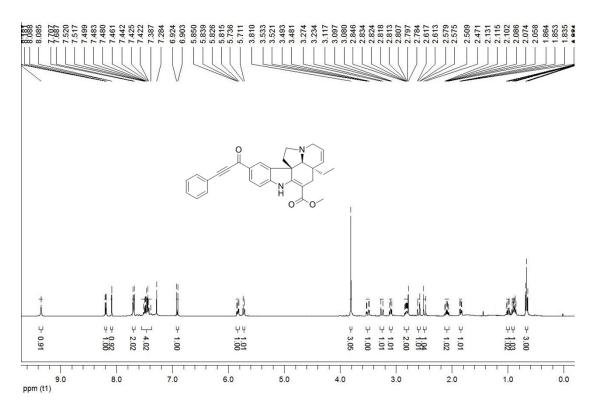


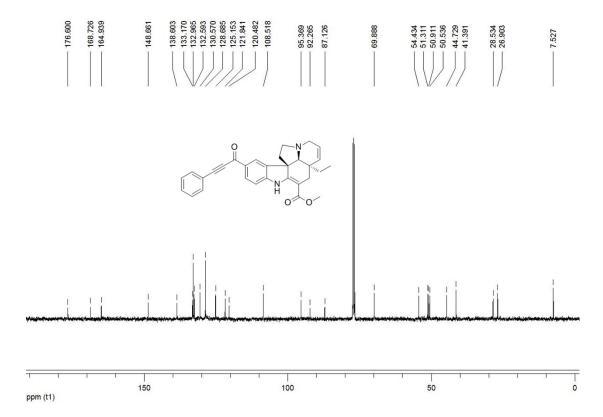


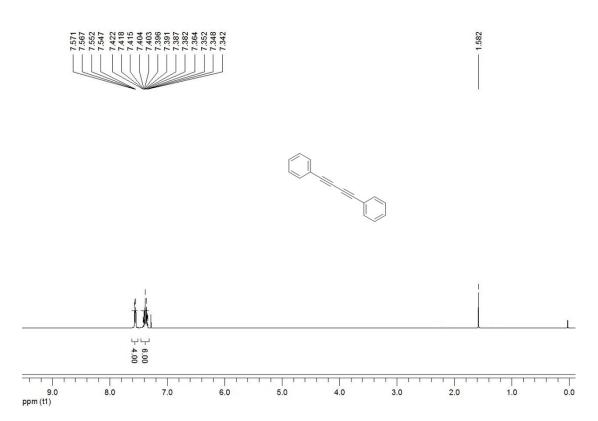

S37

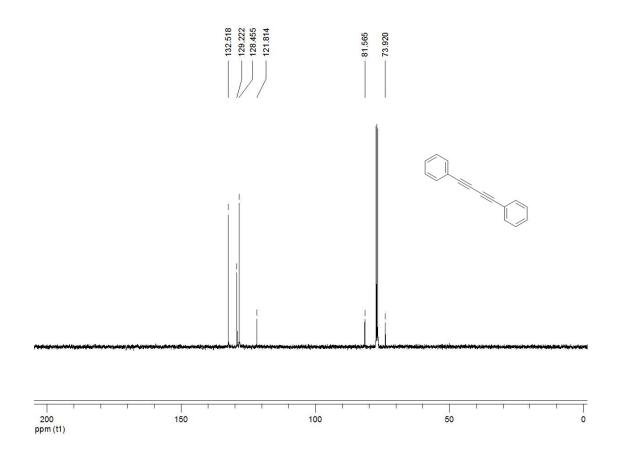



¹H NMR and ¹³C NMR spetra of compound **3ai**








¹H NMR and ¹³C NMR spetra of compound 8

¹H NMR and ¹³C NMR spetra of compound **9**

