## **Electronic Supplementary Information for Dalton Transactions**

## Formation of A Robust Ru<sub>4</sub>O<sub>4</sub> Skeleton with Two Ru<sub>2</sub>(CO)<sub>4</sub> Units in Criss-Cross

## Configuration

Jindou Yang, Xian Wang, Weiqiang Zhang,\* Guofang Zhang,\* and Ziwei Gao

Key Laboratory of Applied Surface and Colloid Chemistry, MOE/School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China

- Fig. S1 Ball-and-stick model representation of DFT structure of  $Ru_4(CO)_8(\mu_2-O, \eta^1-N-pic)_4$  (1) and selected bond lengths and angles. (H atoms excluded for clarity)
- Fig. S2 Ball-and-stick model representation of DFT structure of  $Ru_4(CO)_8(\mu_2-O, \eta^1-O-fur)_4$  (2c) and selected bond lengths and angles. (H atoms excluded for clarity)
- Fig. S3 Ball-and-stick model representation of DFT structure of  $Ru_4(CO)_8(\mu_2-O, \eta^1-S-thi)_4$  (3c) and selected bond lengths and angles. (H atoms excluded for clarity)
- Fig. S4 Ball-and-stick model representation of single-crystal X-ray diffraction structure of  $Ru_4(CO)_8(\mu_2-O, \eta^1-N-pic)_4 \cdot H_2O$  (4) and selected bond lengths and angles
- Fig. S5 Ball-and-stick model representation of single-crystal X-ray diffraction structure of  $Ru_4(CO)_8(\mu_2-O, \eta^1-N-pic)_4 \cdot CH_3CN$  (5) and selected bond lengths and angles

Fig. S6 Ball-and-stick model representation of the packing structure of compound  $Ru_2(CO)_4(fur)_2(H_2O)_2 \cdot H_2O$  (2b)

- Fig. S7 Ball-and-stick model representation of the packing structure of compound Ru<sub>2</sub>(CO)<sub>4</sub>(thi)<sub>2</sub>-(CH<sub>3</sub>OH)<sub>2</sub>·CH<sub>3</sub>OH (**3b**)
- Fig. S8 <sup>1</sup>H NMR spectra of compounds 1, 1a, 2, 2b and 3b
- Fig. S9 IR spectra of compounds 1, 1a, 2a, 2, 2b, 3a, 3 and 3b
- Table S1. Crystal and refinement data of 1, 2b, 3b, 4 and 5
- Table S2. Hydrogen bonding distances (nm) and angles (°) for 2b and 3b
- Table S3. The geometric parameters of  $Ru_4(CO)_8(\mu_2\text{-}O, \eta^1\text{-}N\text{-}pic)_4(1)$
- Table S4. The geometric parameters of  $Ru_4(CO)_8(\mu_2-O, \eta^1-O-fur)_4$  (2c)
- Table S5. The geometric parameters of  $Ru_4(CO)_8(\mu_2-O, \eta^1-S-thi)_4$  (3c)



**Fig. S1** A) Ball-and-stick model representation of DFT structure of  $Ru_4(CO)_8(\mu_2-O, \eta^1-N-pic)_4$  (1). Selected bond lengths [Å] and angles [°]: Ru2 - Ru16 = 2.823; Ru16 - N15 = 2.232; Ru16 - O25 = 2.215; Ru16 - O53 = 2.157; Ru30 - Ru44 = 2.823; Ru44 - N43 = 2.232; Ru44 - O53 = 2.214; Ru44 - O11 = 2.157; N15 - Ru16 - O25 = 73.827; Ru16 - O25 - Ru30 = 119.675; Ru16 - O53 - Ru44 = 119.675; O25 - Ru16 - Ru2 = 97.152; O25 - Ru16 - O53 = 83.432. B). Color code: Green = Ru, red = O, grey = C, blue = N. hydrogen atoms are omitted for clarity.



**Fig. S2** A) Ball-and-stick model representation of DFT structure of  $Ru_4(CO)_8(\mu_2-O, \eta^1-O-fur)_4$  (**2c**). Selected bond lengths [Å] and angles [°]: Ru17 - Ru25 = 2.741; Ru17 - O64 = 2.360; Ru17 - O21 = 2.219; Ru17 - O13 = 2.135; Ru1 - Ru9 = 2.740; Ru1 - O21 = 2.135; Ru1 - O61 = 2.359; Ru1 - O5 = 2.219; O21 - Ru17 - O13 = 83.611; O21 - Ru17 - O64 = 70.803; O21 - Ru17 - Ru25 = 97.914; O61 - Ru1 - O5 = 70.776; O21 - Ru1 - O5 = 83.660; O21 - Ru1 - Ru9 = 82.921; Ru1 - O5 - Ru25 = 118.230; O5 - Ru25 - Ru17 = 82.922; O5 - Ru25 - O29 = 83.611; C19 - Ru17 - C20 = 90.989; C4 - Ru1 - C3 = 90.949; B). Color code: Green = Ru, red = O, grey = C. Hydrogen atoms are omitted for clarity.



**Fig. S3** A) Ball-and-stick model representation of DFT structure of  $Ru_4(CO)_8(\mu_2-O, \eta^1-S-thi)_4$  (**3c**). Selected bond lengths [Å] and angles [°]: Ru1 - Ru9 = 2.747; Ru1 - S45 = 2.745; Ru1 - O21 = 2.140; Ru17 - O21 = 2.256; Ru17 - Ru25 = 2.747; Ru25 - S40 = 2.745; Ru25 - O29 = 2.256; Ru25 - O5 = 2.141; O21 - Ru17 - O13 = 84.171; S50 - Ru17 - O13 = 86.146; S50 - Ru17 - O21 = 74.073; B). Color code: Green = Ru, red = O, grey = C, yellow = S. Hydrogen atoms are omitted for clarity.



**Fig. S4** A) Ball-and-stick model representation of single-crystal X-ray diffraction structure of  $Ru_4(CO)_8(\mu_2-O, \eta^1-N-pic)_4$ ·H<sub>2</sub>O 4. (H atoms excluded for clarity); selected bond lengths [Å] and angles [°]: N1 – Ru1 = 2.195(3); Ru1 – Ru1B = 2.7575(6); Ru1 – O1C = 2.130(3); Ru1 – O1 = 2.181(3); Ru1A – O1A = 2.181(3); Ru1A – O1 = 2.130(3); Ru1A – Ru1C = 2.7575(6); O1 – Ru1 – O1C = 82.84(7); O1 – Ru1 – N1 = 74.40(12); O1C – Ru1 – N1 = O1 87.48(12) ; C8 – Ru1 – Ru1B = 88.12(13); C7 – Ru1 – Ru1 = 91.88(13); O1C – Ru1 – Ru1 = 80.67(7); O1 – Ru1 – Ru1B = 97.79(7); B) . Color code: Green = Ru, red = O, blue = N; grey = C.



**Fig. S5** A) Ball-and-stick model representation of single-crystal X-ray diffraction structure of  $Ru_4(CO)_8(\mu_2-O, \eta^1-N-pic)_4$ ·CH<sub>3</sub>CN **5**; selected bond lengths [Å] and angles [°]: N1 – Ru1 = 2.198(3); Ru1 – Ru1B = 2.7624(9); Ru1 – O1C = 2.145(2); Ru1 – O1 = 2.188(2); Ru1A – O1A = 2.188(2); Ru1A – O1 = 2.145(2); Ru1A – Ru1C = 2.7624(9); O1 – Ru1 – O1C = 82.61(7); O1 – Ru1 – N1 = 74.57(10); O1C - Ru1 – N1 = 89.22(10); C8 – Ru1 – Ru1B = 92.19(10); C7 – Ru1 – Ru1 = 87.84(11); O1C – Ru1 – Ru1 = 80.39(6); O1 – Ru1 – Ru1B = 98.00(6); B) . Color code: Green = Ru, red = O, blue = N; grey = C.



Fig. S6 Ball-and-stick model representation of the packing structure of compound  $Ru_2(CO)_4(fur)_2(H_2O)_2 \cdot H_2O$  (2b). Color code: Green = Ru, red = O, blue = N; grey = C.



Fig. S7 Ball-and-stick model representation of the packing structure of compound  $Ru_2(CO)_4(thi)_2$ -(CH<sub>3</sub>OH)<sub>2</sub>·CH<sub>3</sub>OH (**3b**). Color code: Green = Ru, red = O, blue = N; grey = C.



S6



S7



Fig. S8 <sup>1</sup>H NMR spectra of compounds 1, 1a, 2, 2b and 3b









Fig. S9 IR spectra of compounds 1, 1a, 2a, 2, 2b, 3a, 3 and 3b

| Compounds                                       | 1                           | 2b                       | 3b                          | 4                             | 5                             |
|-------------------------------------------------|-----------------------------|--------------------------|-----------------------------|-------------------------------|-------------------------------|
| Formula                                         | $C_{32}H_{16}N_4O_{16}Ru_4$ | $C_{14}H_{12}O_{13}Ru_2$ | $C_{17}H_{18}O_{11}Ru_2S_2$ | $C_{40}H_{28}N_8O_{16}Ru_4\\$ | $C_{32}H_{20}N_4O_{18}\ Ru_4$ |
| М                                               | 1116.77                     | 590.38                   | 664.57                      | 1280.98                       | 1152.80                       |
| Wavelength (Å)                                  | 0.71073                     | 0.71073                  | 0.71073                     | 0.71073                       | 0.71073                       |
| Crystal system                                  | Tetragonal                  | Tetragonal               | Monoclinic                  | Tetragonal                    | Tetragonal                    |
| Space group                                     | P4(2)/n                     | P4(1)2(1)2               | C2/c                        | P4(2)/n                       | P4(2)/n                       |
| a (Å)                                           | 15.1030(3)                  | 11.3011(2)               | 19.8822(6)                  | 15.341(4)                     | 15.1030(3)                    |
| b (Å)                                           | 15.1030(3)                  | 11.3011(2)               | 8.7859(3)                   | 15.341(4)                     | 15.1030(3)                    |
| <i>c</i> (Å)                                    | 10.0955(4)                  | 30.7585(11)              | 28.4716(8)                  | 9.980(6)                      | 10.0955(4)                    |
| α (°)                                           | 90.00                       | 90.00                    | 90.00                       | 90.00                         | 90.00                         |
| β (°)                                           | 90.00                       | 90.00                    | 104.659(3)                  | 90.00                         | 90.00                         |
| γ (°)                                           | 90.00                       | 90.00                    | 90.00                       | 90.00                         | 90.00                         |
| V (Å <sup>3</sup> )                             | 2302.79(11)                 | 3928.32(17)              | 4811.6(3)                   | 2348.8(16)                    | 2302.79(11)                   |
| Ζ                                               | 2                           | 8                        | 8                           | 2                             | 2                             |
| Calculated density (Mg                          |                             |                          |                             |                               |                               |
| $m^{-3})$                                       | 1.611                       | 1.996                    | 1.835                       | 1.811                         | 1.663                         |
| Absorption coefficient                          |                             |                          |                             |                               |                               |
| (mm <sup>-1</sup> )                             | 1.679                       | 1.603                    | 1.481                       | 1.338                         | 1.355                         |
| F(000)                                          | 1080                        | 2304                     | 2624                        | 1256                          | 1120                          |
| $2\theta$ for data collection (°)               | 3.37 to 25.99               | 3.20 to 26.00            | 3.08 to 26.00               | 3.37 to 25.99                 | 3.37 to 25.99                 |
| Reflections collected                           | 11958 / 2267                | 19804 / 3842             | 24823 / 4725                | 14247 / 2303                  | 11956 / 2266                  |
| /unique                                         | [R(int) = 0.0296]           | [R(int) = 0.0514]        | [R(int) = 0.0343]           | [R(int) = 0.0381]             | [R(int) = 0.0296]             |
| Data/restraints/paramet                         | 2267 / 0 / 127              | 3842 / 0 / 262           | 4725 / 41 / 285             | 2303 / 0 / 155                | 2266 / 0 / 136                |
| Goodness-of-fit on F <sup>2</sup>               | 1.148                       | 1.165                    | 1.150                       | 1.122                         | 1.116                         |
| Final R indices                                 | R1 = 0.0359                 | R1 = 0.0445,             | R1 = 0.0546                 | R1 = 0.0340                   | R1 = 0.0321                   |
| [I>2sigma(I)]                                   | wR2 = 0.1143                | wR2 = 0.0862             | wR2 = 0.1455                | wR2 = 0.0796                  | wR2 = 0.0917                  |
|                                                 | R1 = 0.0501                 | R1 = 0.0500,             | R1 = 0.0657                 | R1 = 0.0412                   | R1 = 0.0464                   |
| R indices (all data)                            | wR2 = 0.1284                | wR2 = 0.0889             | wR2 = 0.1569                | wR2 = 0.0834                  | wR2 = 0.1047                  |
| Largest peak diff, hole<br>(e·Å <sup>-3</sup> ) | 0.995 and -0.433            | 0.657 and -0.818         | 2.427 and -1.339            | 0.577 and -0.674              | 0.589 and -0.377              |

Table S1. Crystal and refinement data of 1, 2b, 3b, 4 and 5

| D–H···A                  | (D–H) (Å) | $(H \cdots A)$ (Å) | $(D \cdots A)$ (Å) | $(D-H\cdots A)$ (°) |  |
|--------------------------|-----------|--------------------|--------------------|---------------------|--|
| 2b                       |           |                    |                    |                     |  |
| O1W - H1W1…O6#1          | 0.85      | 1.96               | 2.810(7)           | 179                 |  |
| O1W - H1W1…O2#2          | 0.85      | 2.47               | 3.113(7)           | 133                 |  |
| O1W - H1W1…O2W#2         | 0.85      | 2.06               | 2.833(8)           | 151                 |  |
| O2W - H2W1⋯O1#3          | 0.85      | 2.09               | 2.868(7)           | 151                 |  |
| O2W - H2W1…O3#3          | 0.85      | 2.36               | 3.013(8)           | 134                 |  |
| O2W - H2W2⋯O3W           | 0.85      | 1.96               | 2.734(12)          | 152                 |  |
| O3W - H3W1…O8#4          | 0.85      | 2.45               | 3.281(12)          | 165                 |  |
| O3W - H3W2…O4#5          | 0.85      | 2.47               | 3.134(12)          | 135                 |  |
| C3 - H3…O1W#3            | 0.93      | 2.58               | 3.373(11)          | 143                 |  |
| 3b                       |           |                    |                    |                     |  |
| O(7) - H(7A)····O(11)    | 0.93      | 1.99               | 2.6187             | 124                 |  |
| O(7) - H(7A)···O(11)#1   | 0.93      | 2.36               | 2.8558             | 113                 |  |
| O(10) - H(10A)····O(2)#2 | 2 0.93    | 1.91               | 2.705(7)           | 141                 |  |
| O(11) - H(11)····O(7)#1  | 0.93      | 2.18               | 2.8558             | 140                 |  |
| O(11) - H(11)····O(7)#1  | 0.93      | 2.49               | 3.357(9)           | 156                 |  |
| C(17) - H(17B)····O(8)#3 | 3 0.96    | 2.59               | 3.4341             | 146                 |  |

Table S2. Hydrogen bonding distances (nm) and angles (°) for 2b and 3b.

Note: Symmetry transformations used to generate equivalent atoms. For **2b**: #1 y, x, -z; #2 1/2-x, 1/2+y, 1/4-z; #3 1/2-x, -1/2+y, 1/4-z; #4 1/2-y, -1/2+x, 1/4+z; #5 3/2-x, -1/2+y, 1/4-z. For **3b**: #1 1-x, y, 1/2-z; #2 1/2-x, 1/2-y, -z; #3 1/2-x, 1/2+y, 1/2-z.

| Table S3 | The geometric parameters of $Ru_4(CO)_8(\mu_2$ -O, $\eta^1$ -N- | $\operatorname{pic}_4(1)$ |
|----------|-----------------------------------------------------------------|---------------------------|

| B3LYP/Lan | L2DZ/6-31G |
|-----------|------------|
|-----------|------------|

| Atom | (            | Coordinates (Angstroms) |              |  |  |
|------|--------------|-------------------------|--------------|--|--|
| Ν    | 13.391830100 | 8.477313900             | 1.398226750  |  |  |
| Ru   | 12.201562670 | 10.260978200            | 0.939689140  |  |  |
| С    | 14.160572800 | 8.561890700             | 2.474407050  |  |  |
| С    | 14.968583300 | 7.507701300             | 2.881255700  |  |  |
| Н    | 15.510781000 | 7.583216300             | 3.632360900  |  |  |
| С    | 14.944418500 | 6.341749700             | 2.140246000  |  |  |
| Н    | 15.473023500 | 5.616805700             | 2.386576200  |  |  |
| С    | 14.142449200 | 6.266234700             | 1.050941550  |  |  |
| Н    | 14.109222600 | 5.482389000             | 0.551214300  |  |  |
| С    | 13.388809500 | 7.330996200             | 0.693560850  |  |  |
| Н    | 12.851142700 | 7.269073900             | -0.063601650 |  |  |
| С    | 14.053341500 | 9.815439700             | 3.287094800  |  |  |
| С    | 13.477917200 | 11.233611400            | 0.053506150  |  |  |
| С    | 11.508486000 | 9.767110100             | -0.678417600 |  |  |
| О    | 13.186429300 | 10.685372500            | 2.836835500  |  |  |
| О    | 14.687667500 | 9.957407900             | 4.303711650  |  |  |
| О    | 14.285927700 | 11.858875600            | -0.463383450 |  |  |
| О    | 11.165647900 | 9.448436800             | -1.714215900 |  |  |
| Ν    | 9.262669900  | 14.177186100            | 1.398226750  |  |  |
| Ru   | 10.452937330 | 12.393521800            | 0.939689140  |  |  |
| С    | 8.493927200  | 14.092609300            | 2.474407050  |  |  |
| С    | 7.685916700  | 15.146798700            | 2.881255700  |  |  |
| Н    | 7.143719000  | 15.071283700            | 3.632360900  |  |  |
| С    | 7.710081500  | 16.312750300            | 2.140246000  |  |  |
| Н    | 7.181476500  | 17.037694300            | 2.386576200  |  |  |
| С    | 8.512050800  | 16.388265300            | 1.050941550  |  |  |
| Н    | 8.545277400  | 17.172111000            | 0.551214300  |  |  |
| С    | 9.265690500  | 15.323503800            | 0.693560850  |  |  |
| Н    | 9.803357300  | 15.385426100            | -0.063601650 |  |  |
| С    | 8.601158500  | 12.839060300            | 3.287094800  |  |  |
| С    | 9.176582800  | 11.420888600            | 0.053506150  |  |  |
| С    | 11.146014000 | 12.887389900            | -0.678417600 |  |  |
| 0    | 9.468070700  | 11.969127500            | 2.836835500  |  |  |
| 0    | 7.966832500  | 12.697092100            | 4.303711650  |  |  |
| 0    | 8.368572300  | 10.795624400            | -0.463383450 |  |  |
| О    | 11.488852100 | 13.206063200            | -1.714215900 |  |  |
| Ν    | 8.477313900  | 9.262669900             | 3.649523250  |  |  |
| Ru   | 10.260978200 | 10.452937330            | 4.108060860  |  |  |
| С    | 8.561890700  | 8.493927200             | 2.573342950  |  |  |
| С    | 7.507701300  | 7.685916700             | 2.166494300  |  |  |
| Н    | 7.583216300  | 7.143719000             | 1.415389100  |  |  |

| С  | 6.341749700  | 7.710081500  | 2.907504000 |
|----|--------------|--------------|-------------|
| Н  | 5.616805700  | 7.181476500  | 2.661173800 |
| С  | 6.266234700  | 8.512050800  | 3.996808450 |
| Н  | 5.482389000  | 8.545277400  | 4.496535700 |
| С  | 7.330996200  | 9.265690500  | 4.354189150 |
| Н  | 7.269073900  | 9.803357300  | 5.111351650 |
| С  | 9.815439700  | 8.601158500  | 1.760655200 |
| С  | 11.233611400 | 9.176582800  | 4.994243850 |
| С  | 9.767110100  | 11.146014000 | 5.726167600 |
| О  | 10.685372500 | 9.468070700  | 2.210914500 |
| О  | 9.957407900  | 7.966832500  | 0.744038350 |
| О  | 11.858875600 | 8.368572300  | 5.511133450 |
| О  | 9.448436800  | 11.488852100 | 6.761965900 |
| Ν  | 14.177186100 | 13.391830100 | 3.649523250 |
| Ru | 12.393521800 | 12.201562670 | 4.108060860 |
| С  | 14.092609300 | 14.160572800 | 2.573342950 |
| С  | 15.146798700 | 14.968583300 | 2.166494300 |
| Н  | 15.071283700 | 15.510781000 | 1.415389100 |
| С  | 16.312750300 | 14.944418500 | 2.907504000 |
| Н  | 17.037694300 | 15.473023500 | 2.661173800 |
| С  | 16.388265300 | 14.142449200 | 3.996808450 |
| Н  | 17.172111000 | 14.109222600 | 4.496535700 |
| С  | 15.323503800 | 13.388809500 | 4.354189150 |
| Н  | 15.385426100 | 12.851142700 | 5.111351650 |
| С  | 12.839060300 | 14.053341500 | 1.760655200 |
| С  | 11.420888600 | 13.477917200 | 4.994243850 |
| С  | 12.887389900 | 11.508486000 | 5.726167600 |
| О  | 11.969127500 | 13.186429300 | 2.210914500 |
| О  | 12.697092100 | 14.687667500 | 0.744038350 |
| О  | 10.795624400 | 14.285927700 | 5.511133450 |
| 0  | 13.206063200 | 11.165647900 | 6.761965900 |

\_\_\_\_

| Table S4. The geometric parameter | $r of Ru_4(CO)_8(\mu_2-O, \eta^1-O-fur)_4$ (2c) |
|-----------------------------------|-------------------------------------------------|
|-----------------------------------|-------------------------------------------------|

| Atom |             | Coordinates (Angstroms | s)          |  |
|------|-------------|------------------------|-------------|--|
| Ru   | -1.21633300 | 0.63080300             | 1.59691400  |  |
| С    | -1.87700600 | 2.70086700             | -0.66162500 |  |
| С    | -0.58742100 | 2.13385200             | 2.51995800  |  |
| С    | -1.65580200 | -0.21125000            | 3.20479400  |  |
| О    | -0.97674200 | 1.75494900             | -0.30159700 |  |
| О    | -1.67044400 | 3.53245100             | -1.56789400 |  |
| О    | -0.19858700 | 3.11222200             | 3.04160100  |  |
| О    | -1.95579500 | -0.67498800            | 4.23997300  |  |
| Ru   | 1.21633300  | -0.63080300            | 1.59691400  |  |
| С    | 1.87700600  | -2.70086700            | -0.66162500 |  |
| С    | 0.58742100  | -2.13385200            | 2.51995800  |  |
| С    | 1.65580200  | 0.21125000             | 3.20479400  |  |
| О    | 0.97674200  | -1.75494900            | -0.30159700 |  |
| Ο    | 1.67044400  | -3.53245100            | -1.56789400 |  |
| Ο    | 0.19858700  | -3.11222200            | 3.04160100  |  |
| О    | 1.95579500  | 0.67498800             | 4.23997300  |  |
| Ru   | -0.63146800 | -1.21647400            | -1.59778600 |  |
| С    | -2.69947200 | -1.87862600            | 0.66135700  |  |
| С    | -2.13422800 | -0.58547800            | -2.52010000 |  |
| С    | 0.21073700  | -1.65625300            | -3.20546700 |  |
| О    | -1.75424000 | -0.97783300            | 0.30097300  |  |
| Ο    | -3.53032200 | -1.67261100            | 1.56844600  |  |
| Ο    | -3.11137100 | -0.19160000            | -3.04028800 |  |
| Ο    | 0.67509700  | -1.95867500            | -4.23963600 |  |
| Ru   | 0.63146800  | 1.21647400             | -1.59778600 |  |
| С    | 2.69947200  | 1.87862600             | 0.66135700  |  |
| С    | 2.13422800  | 0.58547800             | -2.52010000 |  |
| С    | -0.21073700 | 1.65625300             | -3.20546700 |  |
| 0    | 1.75424000  | 0.97783300             | 0.30097300  |  |
| Ο    | 3.53032200  | 1.67261100             | 1.56844600  |  |
| О    | 3.11137100  | 0.19160000             | -3.04028800 |  |
| Ο    | -0.67509700 | 1.95867500             | -4.23963600 |  |
| С    | 3.14349700  | -2.64316400            | 0.06293900  |  |
| С    | 4.32323400  | -3.33296800            | 0.00284300  |  |
| С    | 5.23216100  | -2.71295400            | 0.92930100  |  |
| Н    | 4.52198100  | -4.17478100            | -0.64085400 |  |
| С    | 4.57686900  | -1.66966500            | 1.51978400  |  |
| Н    | 6.25251400  | -3.00685600            | 1.11703600  |  |
| Н    | 4.83044600  | -0.90380000            | 2.23134400  |  |
| С    | 2.64209400  | 3.14510400             | -0.06311100 |  |
| С    | 3.33078900  | 4.32531200             | 0.00036100  |  |

| С | 2.71220600  | 5.23508800  | -0.92615100 |
|---|-------------|-------------|-------------|
| Н | 4.17088300  | 4.52347400  | 0.64643400  |
| С | 1.67044400  | 4.57997000  | -1.51957800 |
| Н | 3.00597500  | 6.25586500  | -1.11186100 |
| Н | 0.90573900  | 4.83438400  | -2.23206900 |
| С | -3.14349700 | 2.64316400  | 0.06293900  |
| С | -4.32323400 | 3.33296800  | 0.00284300  |
| С | -5.23216100 | 2.71295400  | 0.92930100  |
| Н | -4.52198100 | 4.17478100  | -0.64085400 |
| С | -4.57686900 | 1.66966500  | 1.51978400  |
| Н | -6.25251400 | 3.00685600  | 1.11703600  |
| Н | -4.83044600 | 0.90380000  | 2.23134400  |
| С | -2.64209400 | -3.14510400 | -0.06311100 |
| С | -3.33078900 | -4.32531200 | 0.00036100  |
| С | -2.71220600 | -5.23508800 | -0.92615100 |
| Н | -4.17088300 | -4.52347400 | 0.64643400  |
| С | -1.67044400 | -4.57997000 | -1.51957800 |
| Н | -3.00597500 | -6.25586500 | -1.11186100 |
| Н | -0.90573900 | -4.83438400 | -2.23206900 |
| О | -3.28063200 | 1.60685400  | 1.00654600  |
| О | 1.60767300  | 3.28275200  | -1.00856000 |
| О | 3.28063200  | -1.60685400 | 1.00654600  |
| 0 | -1.60767300 | -3.28275200 | -1.00856000 |
|   |             |             |             |

| Atom | Coordinates (Angstroms) |             |             |  |
|------|-------------------------|-------------|-------------|--|
| Ru   | -1.07753200             | 0.84648900  | 1.60618800  |  |
| С    | -1.27903000             | 3.07043800  | -0.70396600 |  |
| С    | -0.17229800             | 2.23542700  | 2.46529900  |  |
| С    | -1.63310700             | 0.14153100  | 3.24068700  |  |
| 0    | -0.70223500             | 1.88887300  | -0.36076700 |  |
| 0    | -0.86929300             | 3.78149100  | -1.63842600 |  |
| О    | 0.40986200              | 3.14901900  | 2.96516400  |  |
| 0    | -1.98006000             | -0.23516200 | 4.30060300  |  |
| Ru   | 1.07753200              | -0.84648900 | 1.60618700  |  |
| С    | 1.27903000              | -3.07043800 | -0.70396700 |  |
| С    | 0.17229400              | -2.23543400 | 2.46530200  |  |
| С    | 1.63310800              | -0.14153100 | 3.24068900  |  |
| Ο    | 0.70223400              | -1.88887300 | -0.36076700 |  |
| О    | 0.86929300              | -3.78149100 | -1.63842600 |  |
| О    | -0.40985800             | -3.14901300 | 2.96516000  |  |
| О    | 1.98005900              | 0.23516100  | 4.30060100  |  |
| Ru   | -0.85319600             | -1.07343400 | -1.59207200 |  |
| С    | -3.07844600             | -1.29240200 | 0.71608400  |  |
| С    | -2.24063900             | -0.15083000 | -2.44723700 |  |
| С    | -0.15038900             | -1.62174700 | -3.22942100 |  |
| 0    | -1.89320800             | -0.71137400 | 0.37617900  |  |
| 0    | -3.77249200             | -0.89130400 | 1.66847800  |  |
| 0    | -3.14147500             | 0.43891900  | -2.93592900 |  |
| 0    | 0.22598700              | -1.97134800 | -4.28796700 |  |
| Ru   | 0.85319600              | 1.07343400  | -1.59207200 |  |
| С    | 3.07844600              | 1.29240300  | 0.71608300  |  |
| С    | 2.24064200              | 0.15082800  | -2.44723900 |  |
| С    | 0.15038700              | 1.62174800  | -3.22942600 |  |
| 0    | 1.89320800              | 0.71137400  | 0.37617900  |  |
| 0    | 3.77249200              | 0.89130400  | 1.66847800  |  |
| 0    | 3.14147200              | -0.43891800 | -2.93592800 |  |
| 0    | -0.22598500             | 1.97134600  | -4.28796200 |  |
| С    | 2.43626800              | -3.47793300 | 0.12923800  |  |
| С    | 2.88540800              | -4.70275600 | 0.42063300  |  |
| S    | 3.38687500              | -2.19314800 | 0.99641200  |  |
| С    | 3.96235500              | -4.72082300 | 1.36394100  |  |
| Н    | 2.43778300              | -5.61531400 | -0.01255600 |  |
| С    | 4.33122300              | -3.50261400 | 1.79877300  |  |
| Н    | 4.44917100              | -5.64068700 | 1.70418400  |  |
| Н    | 5.13171400              | -3.20954000 | 2.48701600  |  |
| С    | 3.47720200              | 2.40724600  | -0.13079300 |  |

Table S5. The geometric parameter of  $Ru_4(CO)_8(\mu_2\text{-}O,\,\eta^1\text{-}S\text{-}thi)_4\,(\textbf{3c})$ 

B3LYP/LanL2DZ/6-31G

| C | 4.76469500  | 2.82726300  | -0.43852200 |
|---|-------------|-------------|-------------|
| S | 2.23484500  | 3.37200800  | -1.02816800 |
| С | 4.78625300  | 3.89178500  | -1.42392400 |
| Н | 5.62576500  | 2.38795900  | -0.00511800 |
| С | 3.54831100  | 4.27593900  | -1.86897600 |
| Н | 5.69339900  | 4.34062300  | -1.76706600 |
| Н | 3.28331300  | 5.04413300  | -2.56900200 |
| С | -2.43626800 | 3.47793300  | 0.12923800  |
| С | -2.88540800 | 4.70275600  | 0.42063300  |
| S | -3.38687500 | 2.19314800  | 0.99641200  |
| С | -3.96235500 | 4.72082300  | 1.36394100  |
| Н | -2.43778300 | 5.61531400  | -0.01255600 |
| С | -4.33122300 | 3.50261300  | 1.79877300  |
| Н | -4.44917100 | 5.64068700  | 1.70418400  |
| Н | -5.13171400 | 3.20954000  | 2.48701600  |
| С | -3.47720300 | -2.40724600 | -0.13079300 |
| С | -4.76469500 | -2.82726300 | -0.43852200 |
| S | -2.23484400 | -3.37200800 | -1.02816800 |
| С | -4.78625300 | -3.89178500 | -1.42392400 |
| Н | -5.62576500 | -2.38795900 | -0.00511800 |
| С | -3.54831100 | -4.27593900 | -1.86897600 |
| Н | -5.69339900 | -4.34062300 | -1.76706600 |
| Н | -3.28331300 | -5.04413300 | -2.56900200 |
|   |             |             |             |