Supporting Information

Isocoumarins and Benzofurans from the Mangrove Endophytic Fungus Talaromyces amestolkiae Possessing α -Glucosidase Inhibitory and Antibacterial

Activities

Senhua Chen¹, Yayue Liu¹, Zhaoming Liu¹, Runlin Cai¹, Yongjun Lu^{2,3}, Xishan Huang^{1, *} and Zhigang She^{1,2,*}

Affiliation

¹ School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China

² Key Laboratory of Functional Molecules from Oceanic Microorganisms (Sun Yat-Sen University), Department of Education of Guangdong Province, Guangzhou 510080, China

³School of Life Sciences and Biomedical Center, Sun Yat-Sen University, Guangzhou 510275, China;

Correspondence

Dr. Xishan Huang, E-mail: huangxishan13@foxmail.com; Prof. Zhigang She, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, 135 West Xingang Road, Guangzhou 510275, P. R. China. E-mail: cesshzhg@mail.sysu.edu.cn. Tel/Fax: +86 20 84113356.

Fig. S1 HREIMS spectrum of 1	4
Fig. S2 ¹ H NMR spectrum of 1 in CDCl ₃	4
Fig. S3 ¹³ C NMR spectrum of 1 in CDCl ₃	5
Fig. S4 HSQC spectrum of 1 in CDCl ₃	5
Fig. S5 ¹ H– ¹ H COSY spectrum of 1 in CDCl ₃	6
Fig. S6 HMBC spectrum of 1 in CDCl ₃	6
Fig. S7 HRESIMS spectrum of 2 in CDCl ₃	7
Fig. S8 ¹ H NMR spectrum of 2 in CDCl ₃	7
Fig. S9 ¹³ C NMR spectrum of 2 in CDCl ₃	8
Fig. S10 HSQC spectrum of 2 in CDCl ₃	8
Fig. S11 ¹ H– ¹ H COSY spectrum of 2 in CDCl ₃	9
Fig. S12 HMBC spectrum of 2 in CDCl ₃	9
Fig. S13 HRESIMS spectrum of 3	10
Fig. S14 ¹ H NMR spectrum of 3 in DMSO- d_6	10
Fig. S15 ¹³ C NMR spectrum of 3 in DMSO- d_6	11
Fig. S16 HSQC spectrum of 3 in DMSO- d_6	11
Fig. S17 ¹ H– ¹ H COSY spectrum of 3 in DMSO- d_6	12
Fig. S18 HMBC spectrum of 3 in DMSO- d_6	12
Fig. S19 HRESIMS spectrum of 4	13
Fig. S20 ¹ H NMR spectrum of 4 in DMSO- d_6	13
Fig. S21 ¹³ C NMR spectrum of 4 in DMSO- d_6	14
Fig. S22 HSQC spectrum of 4 in DMSO- <i>d</i> ₆	14
Fig. S23 $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of 4 in DMSO- d_{6}	15
Fig. S24 HMBC spectrum of 4 in DMSO- <i>d</i> ₆	15
Fig. S25 HRESIMS spectrum of 14	16
Fig. S26 ¹ H NMR spectrum of 14 in MeOH- d_4	16
Fig. S27 ¹³ C NMR spectrum of 14 in MeOH- d_4	17
Fig. S28 HSQC spectrum of 14 in MeOH- d_4	17
Fig. S29 ¹ H– ¹ H COSY spectrum of 14 in MeOH- d_4	18
Fig. S30 HMBC spectrum of 14 in MeOH- d_4	

Fig. S31 HRESIMS spectrum of 15	19
Fig. S32 ¹ H NMR spectrum of 15 in MeOH- d_4	19
Fig. S33 ¹³ C NMR spectrum of 15 in MeOH- d_4	20
Fig. S34 HSQC spectrum of 15 in MeOH- d_4	20
Fig. S35 $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of 15 in MeOH- d_{4}	21
Fig. S36 HMBC spectrum of 15 in MeOH- d_4	21
Fig. S37 HRESIMS spectrum of 16	
Fig. S38 ¹ H NMR spectrum of 16 in MeOH- d_4	
Fig. S39 ¹³ C NMR spectrum of 16 in MeOH- d_4	23
Fig. S40 HSQC spectrum of 16 in MeOH- d_4	23
Fig. S41 $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of 16 in MeOH- d_{4}	24
Fig. S42 HMBC spectrum of 16 in MeOH- d_4	24
Fig. S43 HRESIMS spectrum of 17	25
Fig. S44 ¹ H NMR spectrum of 17 in MeOH- d_4	25
Fig. S45 ¹³ C NMR spectrum of 17 in MeOH- d_4	26
Fig. S46 HSQC spectrum of 17 in MeOH- d_4	26
Fig. S47 $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of 17 in MeOH- d_{4}	27
Fig. S48 HMBC spectrum of 17 in MeOH- d_4	27
Fig. S49 ¹ H NMR spectrum of 4a in CDCl ₃	
Fig. S50 ¹ H NMR spectrum of 4b in CDCl ₃	
Fig. S51 ¹ H NMR spectrum of 14a in CDCl ₃	29
Fig. S52 ¹ H NMR spectrum of 14b in CDCl ₃	29
Fig. S53 ¹ H NMR spectrum of 15a in CDCl ₃	
Fig. S54 ¹ H NMR spectrum of 15b in CDCl ₃	
Fig. S55 X-ray crystallographic analysis of compound 5	31

Fig. S1 HREIMS spectrum of 1

Fig. S2 ¹H NMR spectrum of 1 in CDCl₃

Fig. S3 ¹³C NMR spectrum of 1 in CDCl₃

Fig. S4 HSQC spectrum of 1 in CDCl₃

Fig. S5 ¹H–¹H COSY spectrum of 1 in CDCl₃

Fig. S6 HMBC spectrum of 1 in CDCl₃

Fig. S7 HRESIMS spectrum of 2

Fig. S8 ¹H NMR spectrum of 2 in CDCl₃

Fig. S9 ¹³C NMR spectrum of 2 in CDCl₃

Fig. S10 HSQC spectrum of 1 in CDCl₃

Fig. S11 ¹H–¹H COSY spectrum of 2 in CDCl₃

Fig. S12 HMBC spectrum of 2 in CDCl₃

Fig. S13 HRESIMS spectrum of 3

Fig. S14 ¹H NMR spectrum of **3** in DMSO- d_6

Fig. S16 HSQC spectrum of 3 in DMSO- d_6

Fig. S17 $^{1}\text{H}^{-1}\text{H}$ COSY spectrum of **3** in DMSO- d_{6}

Fig. S18 HMBC spectrum of 3 in DMSO- d_6

Fig. S21 13 C NMR spectrum of 4 in DMSO- d_6

Fig. S22 HSQC spectrum of 4 in DMSO- d_6

Fig. S23 $^{1}\text{H}^{-1}\text{H}$ COSY spectrum of **4** in DMSO- d_{6}

Fig. S24 HMBC spectrum of 4 in DMSO-*d*₆

Fig. S26 ¹H NMR spectrum of 14 MeOH- d_4 .

Fig. S25 HRESIMS spectrum of 14

Fig. S27 ¹³C NMR spectrum of 14 in MeOH- d_4 .

Fig. S28 HSQC spectrum of 14 in MeOH- d_4 .

Fig. S30 HMBC spectrum of 14 in MeOH- d_4 .

Fig. S31 HREIMS spectrum of 15

Fig. S32 ¹H NMR spectrum of 15 MeOH- d_4 .

Fig. S34 HSQC spectrum of 15 in MeOH- d_4 .

Fig. S35 $^{1}\text{H}^{-1}\text{H}$ COSY spectrum of **15** in MeOH- d_{4} .

Fig. S36 HMBC spectrum of 15 in MeOH- d_4 .

Fig. S37 HREIMS spectrum of 16

Fig. S39 ¹³C NMR spectrum of 16 in MeOH- d_4 .

Fig. S40 HSQC spectrum of 16 in MeOH- d_4 .

Fig. S41 $^{1}\text{H}^{-1}\text{H}$ COSY spectrum of **16** in MeOH- d_{4} .

Fig. S42 HMBC spectrum of 16 in MeOH- d_4 .

Fig. S43 HRESIMS spectrum of 17

Fig. S44 ¹H NMR spectrum of 17 MeOH- d_4 .

Fig. S45 13 C NMR spectrum of 17 in MeOH- d_4 .

Fig. S46 HSQC spectrum of 17 in MeOH- d_4 .

Fig. S47 $^{1}H^{-1}H$ COSY spectrum of 17 in MeOH- d_{4} .

Fig. S48 HMBC spectrum of 17 in MeOH- d_4 .

Fig. S49 ¹H NMR spectrum of 4a CDCl₃

Fig. S50 ¹H NMR spectrum of 4b CDCl₃

Fig. S51 ¹H NMR spectrum of 14a CDCl₃

Fig. S52 ¹H NMR spectrum of 14b CDCl₃

Fig. S54 ¹H NMR spectrum of 15b CDCl₃

Fig. S55 X-ray crystallographic analysis of compound 5

Colorless crystals of 5 were obtained by recrystallization from MeOH. C₂₂H₂₀O₁₂, Mr = 476.38, orthorhombic, a = 7.0831(2) Å, b = 10.0442(2) Å, c = 28.1976(5) Å, $\alpha = 10.0442(2)$ Å, c = 10.0442(2) Å, c90.00, $\beta = 90.00$, $\gamma = 90.00$, V = 2006.09(8) Å³, space group $P2_12_12_1$, Z = 4, Dcalcd =1.286 mg/m³, μ (Cu K α) = 1.577 m⁻¹, and F(000) = 992.0. Crystal dimensions: 0.42 × 0.32×0.26 mm³. Independent reflections: 3561 ($R_{int} = 0.0307$). The final R_1 values were 0.0286, $\omega R_2 = 0.0722$ (I > 2σ (I)). Flack parameter value was 0.06(13). CCDC number: 1444470. The single crystal X-ray diffraction data was collected at 123 K on an Single-crystal data were measured on an Agilent Gemini Ultra diffractometer with Cu K α radiation ($\lambda = 1.54178$ Å). The structures were solved by direct methods (SHELXS-97) and refined using full-matrix least-squares difference Fourier techniques. Hydrogen atoms bonded to carbons were placed on the geometrically ideal positions by the "ride on" method. Hydrogen atoms bonded to oxygen were located by the difference Fourier method and were included in the calculation of structure factors with isotropic temperature factors. Crystallographic data for 5 has been deposited with the Cambridge Crystallographic Data Centre. Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, 44-(0)1223-336033, UK (fax: e-mail: or deposit@ccdc.cam.ac.uk).

Fig.S55 X-ray crystallographic analysis of compound 5.