Supporting Information

One pot synthesis of highly functionalized pyrimido[1, 2-b]indazoles via 6-endo-dig cyclization

 Jeyakannu Palaniraja, ${ }^{\text {a }}$ Selvaraj Mohana Roopan ${ }^{\text {a* }}$ and G Mokesh Rayalu ${ }^{\text {b }}$${ }^{\dagger}$ Chemistry of Heterocycles \& Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632 014, Tamilnadu, India.

Department of Mathematics, School of Advanced Sciences, VIT University, Vellore 632 014, Tamilnadu, India.
*Corresponding author. Tel.: +91 98656 10356; +91 04162 202352; fax: +91 416224 5544/5766. E-mail address: mohanaroopan.s@gmail.com;

S.No	Contents	Pages
1.	Experimental section	$2-3$
2.	Figure S1	3
3.	Figure S2	4
4.	Figure S3	4
5.	Spectral characterization of the compound 4(a-t)	$5-9$
6.	Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS of 4(a-t)	$10-54$

Experimental section:

All commercially available reagents were used without any further purification and the reactions were monitored by TLC. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were obtained using a Bruker Avance 400 Mz spectrometer in CDCl_{3} solvent with TMS as an internal standard. Chemical shift values (δ) were expressed in parts per million (ppm). Abbreviations are as follows: s, singlet; d, doublet; t, triplet; m, multiplet. Melting points were measured on Elchem Microprocessor based DT apparatus using an open capillary tubes and are corrected with benzoic acid. Mass spectra were obtained by high resolution mass spectrometer. UV-vis spectrum was obtained on UV-2550, Shimadzu Corporation, Kyoto, Japan. The fluorescence spectra were obtained on Hitachi F-7000 FL spectrophotometer.

General procedure for the synthesis of 2,4-diphenylpyrimido [1,2-b] indazole 4 (a-q) via metal mediated condition:

A mixture of 1 H -indazol-3-amine (1 mmol), aldehydes (1 mmol) and acetylenes (1 mmol) in 5 mL of toluene. Then added $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(21 \mathrm{~mol} \%)$ followed by para -toluene sulphonic acid (10 mol $\%$) in the presence of nitrogen atmosphere. The mixture was refluxed at $121^{\circ} \mathrm{C}$ for 8 h 30 min . The progress of the reaction was monitored by TLC. After the completion of the reaction, evaporated the solvent and the crude was purified by column chromatography afford the product as a solid.

Experimental design \& Mathematical model:

An experimental design for the series of parameters used for the synthesis of 2,4-diphenylpyrimido [1,2-b] indazole by two reaction methods such as metal mediated and metal free conditions. The model was built by Response Surface Methodology (RSM) with the Design - Expert Version 9.0.5.1 (State-Ease, Inc., Minneapolis, USA). Levels of selection for each variable based on the results of the preliminary studies. The three components for each reaction method, such as the catalyst loading (A1), reaction temperature (B1) and response time (C1) were utilized for metal mediated reaction.. The actual isolated yields $\mathbf{Y}_{\mathbf{1}}$ was chosen to be the target or response parameter as dependent variables. The $\mathbf{X}_{\mathbf{1}}$ was denoted as predicted isolated yields. Seventeen sets of experiments were performed for each both reaction methods according to Box-Behnken experimental design (BBD). The variables were tested at the three levels by associating negative sign (-1) for lower level, Zero (0) indicating the core value and plus signs (+1) for higher stages (Table 1). The quadratic polynomial equation recommended by RSM was used to predict the optimal value and examine the interaction between the response of experimental design (actual
yield) and the variables (process parameters). The general form of quadratic polynomial was as follows

$$
\boldsymbol{Y}=\boldsymbol{\beta}_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{11} X_{1}^{2}+\beta_{22} X_{2}^{2}+\beta_{33} X_{3}^{2}+\beta_{12} X_{1} X_{2}+\beta_{13} X_{1} X_{2}+\beta_{23} X_{2} X_{3}
$$

Where β_{0} is constant coefficient of the models. The regression coefficients $\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right.$ and $\left.\boldsymbol{\beta}_{3}\right),\left(\boldsymbol{\beta}_{11}, \boldsymbol{\beta}_{22}\right.$ and $\boldsymbol{\beta}_{33}$) and ($\boldsymbol{\beta}_{12}, \boldsymbol{\beta}_{13}$ and $\boldsymbol{\beta}_{23}$) respectively represent linear, quadratic and interaction effects of the model estimated by multiple regression analysis.

Figure S1: The solvatochromism spectra of the compound 4a.

Figure S2. UV/Vis absorbance spectra of the pyrimido[1,2-b]indazoles 4(a-t) in ethyl acetate.

Figure S3: Fluorescence emission spectra of the pyrimido[1,2-b]indazoles 4(a-t) in ethyl acetate.

Spectral characterization of the compound 4(a-t):

2,4-diphenylpyrimido [1,2-b]indazole (4a)

Yellow solid; Isolated yield - 90%; mp: 154-156 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.30-8.27(\mathrm{~m}, 2 \mathrm{H}), 8.23-820(\mathrm{~m}, 2 \mathrm{H}), 7.86$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.50(\mathrm{~m}, 7 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 108.6,113.9,116.6,120.7,121.2,127.2,128.8$, $129.0,129.5,129.8,130.1,131.1,131.8,137.3,145.0,145.3,151.6,152.6 ;$ HRMS: m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{3} 321.1266$ found 321.1256 .

4-(4-bromophenyl)-2-phenylpyrimido [1,2-b]indazole (4b)

Yellow solid; Isolated yield - 89%; mp: 170-172 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.20-8.12(\mathrm{~m}, 4 \mathrm{H}), 7.86-7.84(\mathrm{~m}, 1 \mathrm{H})$, 7.69-7.59 (m, 7H), 7.32-7.29 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 108.1, 113.9, 116.6, 120.9, 121.1, 124.7, 128.6, 128.9, 129.4, 130.0, 131.1, 131.6, 132.2, 136.2, 144.9, 145.3, 151.1, 151.6; HRMS: m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{BrN}_{3} 399.0371$ found 399.0370 .

4-(4-methoxyphenyl)-2-phenylpyrimido [1,2-b]indazole (4c)

Yellow solid; Isolated yield - 85%; mp: 170-172 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15-8.10(\mathrm{~m}, 3 \mathrm{H}), 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.4,108.1,113.7,114.4,116.5,120.4$, 121.2, 128.6, 128.8, 129.5, 129.7, 129.8, 130.9, 131.9, 145.0, 145.2, 151.5, 152.4, 161.4; HRMS: m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O} 351.1372$ found 351.1371 .

2-phenyl-4-(thiophen-2-yl)pyrimido[1,2-b]indazole (4d)

Brown solid; Isolated yield - 81%; mp: 202-204 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23-8.20(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.82(\mathrm{~m}, 2 \mathrm{H})$, 7.69-7.56 (m, 6H), 7.33-7.29 (m, 1H), 7.22-7.21 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 107.5,113.6,116.5,120.6,121.3,126.8,128.4,128.8$, 129.5, 129.9, 131.0, 131.6, 143.2, 144.6, 145.2, 148.0, 151.6; HRMS: m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{~S} 327.0830$ found 327.0829 .

4-(4-chlorophenyl)-2-phenylpyrimido[1,2-b]indazole (4e)

Yellow solid; Isolated yield - 89%; mp: 202-204 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.0(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.23-8.19(\mathrm{~m}, 4 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.29(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 108.2,113.2,116.6,120.9,121.1$, 128.4, 128.9, 129.2, 129.4, 129.9, 131.1, 131.7, 135.7, 136.3, 144.9, 145.4, 151.1, 151.6; HRMS: m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{Cl} 355.0876$ found 355.0875 .

4-(2,4-dimethoxyphenyl)-2-phenylpyrimido $\mathbf{1 , 2 - b] i n d a z o l e ~ (4 f) ~}$

Yellow solid; Isolated yield - 87%; mp: 160-162 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15-8.14(\mathrm{~m}, 2 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.76$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}$), $6.54(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 55.5,55.8,99.0,105.7,113.0,113.7,116.4,120.0,120.1,121.2$, 128.7, 129.5, 129.6, 130.6, 132.2, 132.4, 143.8, 144.9, 151.2, 152.0, 158.8, 162.5; HRMS: m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} 381.1477$ found 381.1477 .

4-(furan-2-yl)-2-phenylpyrimido[1,2-b]indazole (4g)

Brown solid; Isolated yield - 79 \%; mp: 206-208 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\left.\mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20-8.17(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 2 \mathrm{H})$, 7.65-7.53 (m, 6H), 7.30-7.27 (m, 1H), 7.20-7.18 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 107.5,113.6,116.5,120.6,121.3,126.8,128.4,128.8,129.5$, $129.9,131.0,131.6,143.2,144.6,145.2,148.0,151.6$; HRMS: m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O} 311.1059$ found 311.1058 .

N,N-dimethyl-4-(2-phenylpyrimido [1,2-b]indazol-4-yl)aniline (4h)

Brown solid; Isolated yield - 84%; mp: 147-149 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\left.\mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13-8.11(\mathrm{~m}, 3 \mathrm{H}), 8.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.01$ (s, 6H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 40.2,107.8,112.1,113.6,116.3$, 119.9, 121.3, 124.7, 128.3, 128.7, 129.4, 129.5, 130.7, 132.2, 151.5; HRMS: m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{4} 364.1688$ found 364.1688.

Yellow solid; Isolated yield - 78%; mp: 252-254 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.20-8.12(\mathrm{~m}, 4 \mathrm{H}), 7.86-7.84(\mathrm{~m}, 1 \mathrm{H})$, 7.69-7.59 (m, 7H), 7.32-7.29 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 108.1, 113.9, 116.6, 120.9, 121.1, 124.7, 128.6, 128.9, 129.4, 130.0, 131.1, 131.6, 132.2, 136.2, 144.9, 145.3, 151.1, 151.6; HRMS: m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~N}_{4} 346.1218$ found 346.1217 .

4-(4-nitrophenyl)-2-phenylpyrimido $[1,2-b]$ indazole (4j)

Yellow solid; Isolated yield - 75% mp: 272-274 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.48-8.40(\mathrm{~m}, 5 \mathrm{H}), 8.24-8.22(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ $(\mathrm{s}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $108.4,114.2,116.9,121 ., 121.5,124.2,127.8,128.9,129.5,130.3,131.3$, 143.1, 144.9, 145.5, 148.6, 149.1, 151.8; HRMS: m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ 366.1117 found 366.1115 .

4-(2-phenylpyrimido[1,2-b]indazol-4-yl)phenol (4k)

Brown solid; Isolated yield - 80% mp: 306-308 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 8.36-8.33(\mathrm{~m}, 3 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.71(\mathrm{~m}, 3 \mathrm{H})$, 7.70-7.63 (m, 4H), 7.42-7.32 (m, 2H), 6.99-6.96 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 108.9,113.0,113.7,116.2,117.5,118.2,120.6,120.7,128.4$, $129.8,129.9,130.0,130.9,131.2,137.9,144.0,144.7,150.6,152.1,157.9$; HRMS: m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O} 337.1215$ found 337.1214.

4-(4-isopropylphenyl)-2-phenylpyrimido[1,2-b]indazole (41)

Yellow solid; Isolated yield - 87 \%; mp: 156-158 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.22-8.19(\mathrm{~m}, 4 \mathrm{H}), 7.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H})$, 3.05-2.98 (m 1H), $1.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $23.8,34.1,108.5,113.8,116.5,120.5,121.2,127.2,128.8,129.5,129.8,130.9$, $131.9,135.0,131.9,135.0,145.0,151.3,151.5,152.8$; HRMS: m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} 363.1735$ found 363.1734 .

2-phenyl-4-(p-tolyl)pyrimido[1,2-b]indazole (4m)

Yellow solid; Isolated yield - 90%; mp: 202-204 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.43-8.40(\mathrm{~m}, 1 \mathrm{H}), 8.22-8.17(\mathrm{~m}, 4 \mathrm{H}), 7.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}$, 1 H), $2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.4,108.4,113.8,116.5$, $120.5,121.2,127.1,128.8,129.5,129.8,130.9,131.9,134.6,140.4,145.0$, 145.2, 151.6, 152.7; HRMS: m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} 335.1422$ found 335.1420 .

4-(naphthalen-1-yl)-2-phenylpyrimido $[1,2-b]$ indazole (4n)

Brown solid; Isolated yield - 81%; mp: 180-182 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.44-8.37(\mathrm{~m}, 2 \mathrm{H}), 8.27-8.25(\mathrm{~m}, 2 \mathrm{H}), 8.01-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.66-$ $7.53(\mathrm{~m}, 8 \mathrm{H}), 7.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $113.1,113.8,116.6,120.8,121.2,125.3,126.2,127.1,128.2,128.6$, $128.8,129.5,129.9,130.0,130.9,131.1,131.5,134.1,136.4,144.9$, 151.6, 154.7; HRMS: m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{~N}_{3} 371.1422$ found 371.1420.

4-(2-nitrophenyl)-2-phenylpyrimido[1,2-b]indazole (40)

Brown solid; Isolated yield - 77 \%; mp: 200-202 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22-8.19(\mathrm{~m}, 2 \mathrm{H}), 8.04-8.01(\mathrm{~m}$, $1 \mathrm{H}), 7.89-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 5 \mathrm{H}), 7.41(\mathrm{~s}$, $1 \mathrm{H}), 7.33-7.32(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 110.6,113.9$, 116.7, 121.1, 121.3, 124.8, 128.9, 129.5, 130.1, 130.1, 131.2, 131.3, 131.5, 132.8, 133.6, 144.6, 145.3, 149.0, 150.4, 151.6 ; HRMS: m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} 366.1117$ found 366.1115 .

4-(2-chlorophenyl)-2-phenylpyrimido [1,2-b]indazole (4p)

Yellow solid; Isolated yield - 70%; mp: 198-200 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26-8.24(\mathrm{~m}, 2 \mathrm{H}), 7.91-7.88(\mathrm{~m}, 2 \mathrm{H})$, $7.76(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.43(\mathrm{~m}, 7 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 112.8,113.9,116.6,120.9,121.0,127.4,128.8,129.5,129.8$, $130.4,130.5,131.1,131.5,131.8,132.4,137.5,144.2,144.9,151.4,152.2$; HRMS: m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{Cl} 355.0876$ found 355.0875 .

(4-phenylpyrimido[1,2-b]indazol-2-yl)methanol (4q)

Brown solid; Isolated yield - 76%; mp: 206-208 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $61.1,106.0,113.8,116.0,120.9,121.3,127.3,129.1,130.2,130.3,137.1,144.9,151.5,153.2$; HRMS: m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O} 275.1059$ found 275.1059.

2-(4-bromophenyl)-4-phenylpyrimido $[1,2-b]$ indazole (4s)

Yellow solid; Isolated yield - 76 \%; mp: 168-170 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\left.\mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.29-8.27(\mathrm{~m}, 2 \mathrm{H}), 8.23-8.31(\mathrm{~m}, 2 \mathrm{H})$, $7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.51(\mathrm{~m}, 6 \mathrm{H}), 7.31(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 108.6,113.9,116.6,120.7,121.2$, $127.2,128.5,129.0,129.5,129.8,130.1,131.0,131.8,137.3,145.0,145.3$, 151.6, 152.6; HRMS: m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{BrN}_{3} 399.0371$ found 399.0370.

4-(4-phenylpyrimido[1,2-b]indazol-2-yl)benzonitrile (4t)

Yellow solid; Isolated yield - 76%; mp: 232-234 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.30(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}$, $1 \mathrm{H}), 7.70-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 108.8,114.0,114.5,116.5,118.1,121.2,127.1,129.1,130.2$, $130.3,130.4,132.5,136.0,136.9,142.9,145.0,151.6,152.5 ;$ HRMS: m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~N}_{4} 346.1218$ found 346.1218 .

5,7-diphenyl-[1,2,4]triazolo[1,5-a]pyrimidine (4u)

Off-White solid; Isolated yield - 65%; mp: $160-161{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 2 \mathrm{H}), 8 . .14(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.56(\mathrm{~m}$, $7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 106.6,127.8,128.3,128.5,129.0,129.1$, $129.3,130.2,131.3,131.8,133.1,136.4,148.1,156.3,161.7$; HRMS: m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4} 272.1062$ found 272.1060.

5,7-diphenylpyrazolo[1,5-a]pyrimidine (4v)

Brown solid; Isolated yield - 60%; mp: $84-85{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.17-8.06 (m, 5H), 7.58-7.46 (m, 6H), 7.35 (s, 1H), $6.80(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 97.2,105.2,127.3,128.3,128.5,128.7,128.9,129.7,130.3$, 130.9, 131.5, 137.5, 145.2, 146.8, 149.9, 156.2; HRMS: m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3}$ 271.1109 found 272.1109 .

2,4-diphenylbenzo[4,5]imidazo[1,2-a]pyrimidine (4w)

Off-White solid; Isolated yield - 35%; mp: 276-277 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.60$ (m, 4H), 7.59-7.46 (m, 4H), 7.38-7.37 (m, 2H), 7.20-7.19 (m, 1H), 6.96$6.60(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 104.2,113.4,119.2,120.1$, $124.9,126.8,127.3,127.9,128.4,130.0,130.2,131.5,135.6,144.5$, 148.3, 160.1 ; HRMS: m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{3} 321.1266$ found 321.1265.

Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS of 4(a-t):

${ }^{1} \mathrm{H}$ NMR spectrum of compound (4a):

Expanded ${ }^{1} \mathbf{H}$ NMR spectrum of compound (4a):

${ }^{13} \mathrm{C}$ NMR spectrum of compound (4a):

DEPT - $\mathbf{1 3 5}$ spectrum of compound (4a):

HRMS spectrum of compound (4a):

${ }^{1} H$ NMR spectrum of compound (4b):

Expanded ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of compound (4b):

${ }^{\text {CN13 }}$ C NMR spectrum of compound (4b):

HRMS spectrum of compound (4b):

JPR.235P
Scan: 2 TIC=4554416 Base=11.7\%FS \#ions=1044 RT=03

${ }^{1} \mathrm{H}$ NMR spectrum of compound (4c):

Signature SIF VIT VELIORE
JPR-321-P

Expanded ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of compound (4c):

Signature SIF VIT VELIORE
JPR-321-P
JPR-321-P

${ }^{13} \mathrm{C}$ NMR spectrum of compound (4c):

HRMS spectrum of compound (4c):

Scan: 10 TIC=3525040 Base=9.1\%FS \#ions=1639 RT= 23

${ }^{1} \mathrm{H}$ NMR spectrum of compound (4d):

Expanded ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of compound (4d):

${ }^{13} \mathrm{C}$ NMR spectrum of compound (4d):

JPR-312
Scan: 1 TIC=4942368 Base=26.4\%FS \#ions=1714 RT=. 02

${ }^{1} \mathrm{H}$ NMR spectrum of compound (4e):

Expanded ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of compound (4e):

Signature SIF VIT VELIORE

 JPR-249-P
シจo以

${ }^{13} \mathrm{C}$ NMR spectrum of compound (4e):

HRMS spectrum of compound (4e):

${ }^{1} \mathrm{H}$ NMR spectrum of compound (4f):

Signature SIF VIT VELIORE
JPR-314-P

Expanded ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of compound (4f):

${ }^{13} \mathrm{C}$ NMR spectrum of compound (4f):

HRMS spectrum of compound (4f):

${ }^{1} \mathrm{H}$ NMR spectrum of compound $(\mathbf{4 g})$:

Expanded ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of compound ($\mathbf{4 g}$):

Signature SIF VIT VELIORE
 JPR-236-TOP

${ }^{13}$ C NMR spectrum of compound (4g):

HRMS spectrum of compound (4g):

JPR-236P
Scan: 2 TIC=6056880 Base=33.2\%FS \#ions=980 RT=. 03

${ }^{1} \mathrm{H}$ NMR spectrum of compound (4h):

Signature SIF VIT VELLORE JPR-308-P

\qquad
current Data parameter,

Current Data Farameter, DaMz Desktor

F2-Meguisition Paramevers	
Date-	150507
Imstron	ppecy
FROBAD	$5 \mathrm{mz} \mathrm{PABSO} 38 /$
Futprog	=630
	65536
302ven:	CDC13
38	16
35\%	$0223.685^{2} \mathrm{zz}$
FTDRES	0.125483
${ }^{2} 8$	3.9845889 sec
RG	${ }^{1999} 6$
D\%	60.800 z
DE	6.50
D1	
D10	1.00000000 sec
7D0	1
$\begin{array}{ll} \text { MVC1 } & 14 \\ \text { F1 } & 14.25 \\ \text { F2Nec } & 14.00000000 \mathrm{~F} \\ \text { FFO1 } & 400.2604718 \mathrm{vHz} \end{array}$	
- Processing paramete	
${ }_{35}$	65536
3	400.2580426 M.
\%D*	EM
${ }^{395}$	00.00 ya
${ }^{18}$	0.30 nz
$\frac{G B}{F C}$	
	1.00

Expanded ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of compound (4h):

${ }^{13} \mathrm{C}$ NMR spectrum of compound (4h):

HRMS spectrum of compound (4h):

${ }^{1} \mathrm{H}$ NMR spectrum of compound (4i):

Signature SIF VIT VELIORE JPR-246-P

$4 i$

- - M E	
Current	va paramever,
mave	Desktop
FROCMO	$\stackrel{1}{1}$
F 2 - Aeq	aisition Paramever
Date-	20150113
fivispon	ppect
PROBED	$5=$ PABSO 3B/
FUTPROG	(65536
sorvens	CDC13
	${ }_{2}^{16}$
3\%	$8223.685^{\text {\% }} \mathrm{zz}$
Fiders	0.125483 ${ }^{\text {Hz }}$
26	3.9558 .97 sec
5\%	60.000 usec
-	\% 6.50 zasec
81	1.00000000 sec
700	1
\%1.01	14.000000600 ${ }^{14}{ }^{125}$
3501	400.2604718 kz
F2 - Processing paramevers	
3F 400.2580122 ME	
33300	
${ }_{F}^{6 B}$	1.00

[^0]Expanded ${ }^{1} \mathrm{H}$ NMR spectrum of compound (4i):

Signature SIF VIT VELLORE
JPR-246-P

${ }^{13} \mathrm{C}$ NMR spectrum of compound (4i):

Signature SIF VIT VELLORE
JPR-246-P

HRMS spectrum of compound (4i):

${ }^{1} \mathrm{H}$ NMR spectrum of compound ($\mathbf{4} \mathbf{j}$):

Expanded ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of compound (4j):

Signature SIF VIT VELIORE JPR-239-P

${ }^{13} \mathrm{C}$ NMR spectrum of compound (4 j):

HRMS spectrum of compound (4 j):

${ }^{1} \mathrm{H}$ NMR spectrum of compound (4 k):

Expanded ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of compound (4 k):

${ }^{13} \mathrm{C}$ NMR spectrum of compound (4 k):

Signature SIF VIT VELLORE
SPR-247-P

HRMS spectrum of compound (4k):

${ }^{1} \mathrm{H}$ NMR spectrum of compound (41):

${ }^{13} \mathrm{C}$ NMR spectrum of compound (41):

HRMS spectrum of compound (41):

${ }^{1} \mathrm{H}$ NMR spectrum of compound (4m):

Expanded ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of compound ($\mathbf{4 m}$):

Signature SIF VIT VELIORE
JPR-237-P

${ }^{13} \mathrm{C}$ NMR spectrum of compound (4 m):

Signature SIF VIT VELIORE
JPR-237-P

HRMS spectrum of compound (4 m):

${ }^{1} \mathrm{H}$ NMR spectrum of compound (4n):

Expanded ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of compound ($\mathbf{4 n} \mathbf{n}$):

${ }^{13} \mathrm{C}$ NMR spectrum of compound (4 n):

HRMS spectrum of compound (4n):

${ }^{1} \mathrm{H}$ NMR spectrum of compound (40):

Expanded ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of compound (40):

${ }^{13} \mathrm{C}$ NMR spectrum of compound (40):

HRMS spectrum of compound (40):

${ }^{1} \mathrm{H}$ NMR spectrum of compound (4p):

Signature SIF VIT VELIORE
JPR-240-P

Expanded ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of compound (4p):

${ }^{13} \mathrm{C}$ NMR spectrum of compound (4 p):

HRMS spectrum of compound (4p):

${ }^{1} \mathrm{H}$ NMR spectrum of compound (4 q$)$:

Signature SIF VIT VELIORE
JPR-315-P

Expanded ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of compound (4q):

${ }^{13}$ C NMR spectrum of compound (4 q):

HRMS spectrum of compound (4q):

${ }^{1} \mathrm{H}$ NMR spectrum of compound (4 s):

Expanded ${ }^{1} \mathrm{H}$ NMR spectrum of compound (4s):

${ }^{13} \mathrm{C}$ NMR spectrum of compound (4 s):

HRMS spectrum of compound (4s):

${ }^{1} \mathrm{H}$ NMR spectrum of compound (4t):

Expanded ${ }^{1} H$ NMR spectrum of compound (4t):

${ }^{13} \mathrm{C}$ NMR spectrum of compound (4 t):

HRMS spectrum of compound (4t):

${ }^{1} \mathrm{H}$ NMR spectrum of compound (4u):

Signature SIF VIT VELIORE
JPR-301-P

Expanded ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of compound (4u):

```
l}\begin{array}{l}{\mathrm{ Signature SIF VIT VELLORE}}\\{\mathrm{ JPR-301-P}}
```


${ }^{13} \mathrm{C}$ NMR spectrum of compound (4 u):

HRMS spectrum of compound (4u):

Scan: 2 TIC=10484432 Base=83.3\%FS \#ions=1213 RT=03

${ }^{1} \mathrm{H}$ NMR spectrum of compound (4 v):

Expanded ${ }^{1} \mathrm{H}$ NMR spectrum of compound (4v):

Signature SIF VIT VELLORE
JPR-306-P

${ }^{13} \mathrm{C}$ NMR spectrum of compound (4v):
为

HRMS spectrum of compound (4v):

${ }^{1} H$ NMR spectrum of compound (4w):

${ }^{13} \mathrm{C}$ NMR spectrum of compound (4w):

HRMS spectrum of compound (4w):

[^0]:

