Electronic Supplementary Information

Superparamagnetic core-shell radical polymer brushes as efficient catalysts for the oxidation of alcohols to aldehydes and ketones

Jina-Jhe Yang,^a Chia-Chen Li,^b Yi-Fei Yang,^a Chan-Yang Wang^a, Chun-Hao Lin^a and Jyh-Tsung Lee^{a,c,*}

^aDepartment of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan ^bDepartment of Material Science and Resource, National Taipei University of Technology, Taipei, Taiwan. ^cDepartment of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan Tel: +886 7 525 3951 *E-mail: jtlee@faculty.nsysu.edu.tw

Contents

1. Materials	S1
2. Instruments	S2
3. Preparation of $Fe_3O_4@SiO_2$ core-shell PTMA brushes	S3
4. XRD	S6
5. TEM	S7
6. XPS	S9
7. EPR	S11
8. TGA	S12
9. NMR Spectra	S13

1. Materials

Iron(III) chloride (FeCl₃, 98%) and tetraethoxysilane (TEOS, 98%) were obtained from Riedel-de Häen (Germany) and Fluka (Milwaukee, WI, USA), respectively. 2,2,6,6-Tetramethylpiperinyl methacrylate (TMPM, 98%) and but-3-en-1-ol were obtained from Tokyo Chemical Industry (TCI, Tokyo, Japan). 2-Bromo-2-methylpropionyl bromide (98%), platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex in xylene (~2% Pt), copper(I) bromide (CuBr, 99.999%), N,N,N',N",N"-pentamethyldiethylenetriamine (PMDETA, 99+%), 2-(2-(benzyloxy)ethoxy)ethanol (97%), 3-methyl-4-nitrophenylmetnanol (98%). cyclohexanol (99%), and ethylene glycol (99.5%) were purchased from Sigma-Aldrich. 1-Butanol (99.5%), 4-methylpentan-2-ol (97%), methylene chloride (99.9%), and hydrochloric acid (HCl, 37%) were obtained from Merck (Darmstadt, Germany). 1-Octanol (99.5%) was purchased from Shimakyu Chemicals (Osaka, Japan). 2-Ethylhexan-1-ol was purchased from Janssen Chemicals (Beerse, Belgium). Benzyl alcohol was purchased from Alfa Aesar (Ward Hill, MA). Sodium acetate (95%, anhydrous) was purchased from Osaka Chemicals (Osaka, Japan). Trichlorosilane (>98%), sodium bicarbonate (99.5%), potassium bromide (99%), and magnesium sulfate (99%, anhydrous) were purchased from Showa Chemicals (Tokyo, Japan). Acetone (99%), ethanol (95%), toluene (99.9%) and sodium hypochlorite (6% aqueous solution) were purchased from Echo Chemicals (Miaoli, Taiwan). Ammonia (28-30% aqueous solution) was purchased from J. T. Baker (Phillipsburg, NJ, USA). 3-Chloroperoxybenzoic acid (mCPBA, 70~75%) was purchased from Acros Organics (Geel, Belgium). Except for mCPBA, all chemicals were used as received. mCPBA was recrystallized in methanol.1 The surface initiator. (4-(2-bromo-2methyl)propionyloxy)butyltrichlorosilane (BMPBTS), was synthesized according to the previous paper.²

References:

 V. K. Aggarwal, Z. Gultekin, R. S. Grainger, H. Adams and P. L. Spargo, J. Chem. Soc. Perkin Trans. 1, 1998, 2771.
Y.-H. Wang, M.-K. Hung, C.-H. Lin, H.-C. Lin and J.-T. Lee, Chem. Commun., 2011, 47, 1249.

2. Instruments

The surface morphology of nanoparticles was observed by a field emission scanning electron microscope (FESEM, JEOL JSM-6700F) using an accelerating voltage of 10 kV. The transmission Fourier transform infrared spectroscopy (FTIR) spectra were measured by a Perkin-Elmer spectrum 100 FTIR spectrometer with a resolution of 4 cm⁻¹. The percentage of the PTMA brushes was determined by means of a thermogravimetric analysis (TGA) with a Perkin-Elmer TGA 4000 analyzer in an atmosphere of air at a heating rate of 10 °C min⁻¹ from 50 to 800°C. ¹H-NMR spectra were acquired using a 300 MHz NMR Bruker spectrometer. The chemical composition of nanoparticles and the oxidation state of elements were measured by loading nanoparticles on gold coated silicon wafers then performing the Xray photoelectron spectroscopy (XPS, ULVAC-PHI, PHI Quantera SXM) with a focused monochromatic Al K_{α} radiation (1486.6 eV). Electron paramagnetic resonance (EPR) spectrum was measured on a Bruker EMX-10 spectrometer. The percentage of carbon (C), hydrogen (H), and nitrogen (N) in the Fe₃O₄@SiO₂ core-shell PTMA brush catalyst was determined by an elemental analyzer (Elementar vario EL III CHN-OS Rapid). The structure of the Fe₃O₄ nanoparticles and the Fe₃O₄@SiO₂ core-shell nanoparticles was performed by powder X-ray diffraction (XRD) using a Bruker D8. The thickness of the SiO₂ layer of Fe₃O₄@SiO₂ core-shell nanoparticles was observed by a transmission electron microscope (TEM, JEOL JEM-2010) using an accelerating voltage of 200 kV.

3. Preparation of Fe₃O₄@SiO₂ core-shell PTMA brushes

 $Fe_3O_4@SiO_2$ nanoparticles were modified with a surface initiator, BMPBTS, and the subsequent surface-initiated polymerization of TMPM on $Fe_3O_4@SiO_2$ nanoparticles was carried out by atom transfer radical polymerization (ATRP) to graft PTMPM brushes on the nanoparticles. The PTMPM brushes were oxidized by *m*CPBA in dichloromethane to give $Fe_3O_4@SiO_2$ core-shell PTMA brushes. The detail synthesis processes of the $Fe_3O_4@SiO_2$ core-shell PTMA brushes are shown below.

Synthesis of Fe₃O₄ nanoparticles

Iron(III) chloride (FeCl₃, 1.62 g) was dissolved in ethylene glycol (EG, 100 mL), and then sodium acetate (7.24 g) was added into the EG solution. The above solution was sealed in an autoclave. The autoclave was heated at 200 °C for 8 h to form Fe₃O₄ nanoparticles, and then was naturally cooled to room temperature. Using a magnet to separate Fe₃O₄ nanoparticles from the mixture solution. The Fe₃O₄ nanoparticles were redispersed in DI water and recovered by the magnet twice. Followed by washing with ethanol for three times, the the Fe₃O₄ nanoparticles were dreid in a vacuum oven at 60°C for 8 h.

Synthesis of Fe₃O₄@SiO₂ core-shell nanoparticles

The Fe₃O₄ nanoparticles (0.1 g) were dispersed in a 0.1 M HCl_(aq) (50 mL), and then were ultrasinicated for 10 min. After the ultrasonication, the Fe₃O₄ nanoparticles were collected by a magnet. The the nanpaticles were washed with DI water twice. Then, the nanoparitcles were dispersed in a 20 mL DI water. The nanoparitcle dispersion was added with ethanol (80 mL) and ammonium hydroxide solution (1 mL). Next, TEOS (32 μ L) was slowly added in the nanoparticle solution with a mechanical stirring. After 6 h reaction, the resulting Fe₃O₄@SiO₂ nanoparticles were washed with ethanol for three times. Finally, the nanoparticles were dreid in a vacuum oven at 60°C for 8 h.

Attachment of surface initiator on Fe₃O₄@SiO₂ nanoparticles

The Fe₃O₄@SiO₂ nanoparticles (0.41 g) were dispersed in toluene (10 mL) solution of BMPBTS (100 μ L) at room temperature for 5 h. Then, the initiator-attached Fe₃O₄@SiO₂ nanoparticles were washed and ultrasonicated in acetone for 10 minutes three times. Finally, the Fe₃O₄@SiO₂ nanoparticles were dried in a vacuum oven at 60°C for 8 h.

Surface-initiated ATRP of TMPM on Fe₃O₄@SiO₂ core-shell nanoparticles

PMDETA (31 µL) was dissolved in a 10-mL cosolvent of acetone/water (= 4/1, v/v). The solution was sealed in a flask and degassed by three freeze-pump-thaw cycles. The above solution was transferred *via* a cannula into a degassed flask containing CuBr (7.2 mg) as a catalyst. Finally, the above solution of was transferred by a cannula into a degassed container containing the Fe₃O₄@SiO₂ nanoparticles (408.2 mg) and TMPM (1.1267 g). The polymerization was carried out under a nitrogen atmosphere at 60°C for 1 h to give PTMPM brushes. The Fe₃O₄@SiO₂ core-shell PTMPM brushes were rinsed and ultrasonicated with acetone and then dried in a vacuum oven at 60°C for 8 h.

Fe₃O₄@SiO₂ core-shell PTMA brushes: Oxidation of PTMPM brushes

 $Fe_3O_4@SiO_2$ core-shell PTMPM brushes (392.6 mg) were dispersed in a 20 mL dichloromethane solution of *m*CPBA (192.2 g) at room temperature for 10 minutes to give the PTMA brush. The resulting $Fe_3O_4@SiO_2$ core-shell PTMA ($Fe_3O_4@SiO_2$ -PTMA) brushes were ultrasonicated with acetone for three times and then dried in a vacuum oven at 60°C for 8 h.

Oxidation of alcohols using $Fe_3O_4@SiO_2$ core-shell PTMA brushes as a catalyst

Fe₃O₄@SiO₂-PTMA (2.6 mg) were dispersed in a 1.5 mL dichloromethane solution of KBr (9.5 mg) and alcohol (The molar ratio of alcohol and TEMPO is 100 to 1.). A 3-mL aqueous solution of NaClO (pH value was adjusted to 9.33 by adding 1 M NaHCO₃ aqueous solution) was dropwise added to above solution at 0°C. The organic layer was dried by anhydrous

MgSO₄, and then was concentrated. The conversion was measured by ¹H-NMR spectroscopy.

Recovery of $Fe_3O_4@SiO_2$ core-shell PTMA brushes catalyst

For the recovery of $Fe_3O_4@SiO_2$ -PTMA, the reaction mixture was added with ethanol (to reduce emulsification), and the catalyst was recovered with a magnet. The recovered catalyst was washed by DI water and ethanol sequentially for three times. Finally, the catalyst was dried using vacuum pump at 60°C for 8 h.

Fig. S1 XRD patterns of (a) Fe_3O_4 nanoparticles, (b) $Fe_3O_4@SiO_2$ nanoparticles, (c) $Fe_3O_4@SiO_2$ core-shell PTMA brush, and (d) $Fe_3O_4@SiO_2$ core-shell PTMA brush after catalyzing the oxidation of benzyl alcohol.

5. TEM

Fig. S2 TEM image of Fe_3O_4 ($@SiO_2$ nanoparticles.

Fig. S3 EDS of the above TEM image of $Fe_3O_4@SiO_2$ nanoparticles.

Elements	Atomic %
O K	20.43
Si K	2.64
Fe K	25.76
Cu K*	51.17

Table S1 Atomic concentration of $Fe_3O_4@SiO_2$ nanoparticles obtained by EDS

* Contributed from Cu grid.

Fig. S4 XPS survey spectra of (a) Fe_3O_4 nanoparticles, (b) $Fe_3O_4@SiO_2$ nanoparticles, and (c) $Fe_3O_4@SiO_2$ core-shell PTMA brush.

Fig. S5 XPS spectra for binding energy N1s of Fe₃O₄@SiO₂ core-shell PTMA brush.

	C1s	N1s	O1s	Si2p	Fe2p
Fe ₃ O ₄	30.83	-	47.24	-	21.94
Fe ₃ O ₄ @SiO ₂	12.66	-	60.78	26.45	0.11
Fe ₃ O ₄ @SiO ₂ -PTMA Brush	39.14	2.42	40.50	17.82	0.12

Table S2 Atomic concentration obtained by XPS.

Table S3 Atomic weight percentage and	lyzed by	' an elemental	analyzer
--	----------	----------------	----------

	Weight percentage (%)			
	С	Н	Ν	
Measurement	47.98	6.39	3.18	

Fig. S6 EPR spectrum of Fe₃O₄@SiO₂ core-shell PTMA brush.

8. TGA

Fig. S7 TGA curves for (a) $Fe_3O_4@SiO_2$ nanoparticles, (b) surface initiator-modified $Fe_3O_4@SiO_2$ nanoparticles, (c) $Fe_3O_4@SiO_2$ core-shell PTMPM brushes, and (d) $Fe_3O_4@SiO_2$ core-shell PTMA brushes.

Fig. S8 ¹H-NMR spectrum of 1-butanol.

Fig. S9 ¹H-NMR spectrum of oxidized 1-butanol catalyzed by Fe₃O₄@SiO₂-PTMA.

Fig. S10 ¹H-NMR spectrum of 1-octanol.

Fig. S11 ¹H-NMR spectrum of oxidized 1-octanol catalyzed by Fe₃O₄@SiO₂-PTMA.

Fig. S12 ¹H-NMR spectrum of 2-(2-(benzyloxy)ethoxy)ethanol.

Fig. S13 ¹H-NMR spectrum of oxidized 2-(2-(benzyloxy)ethoxy)ethanol catalyzed by $Fe_3O_4@SiO_2$ -PTMA.

Fig. S14 ¹H-NMR spectrum of 2-ethylhexan-1-ol.

Fig. S15 ¹H-NMR spectrum of oxidized 2-ethylhexan-1-ol catalyzed by Fe₃O₄@SiO₂-PTMA.

Fig. S16 ¹H-NMR spectrum of benzyl alcohol.

Fig. S17 ¹H-NMR spectrum of oxidized benzyl alcohol catalyzed by Fe₃O₄@SiO₂-PTMA.

Fig. S18 ¹H-NMR spectrum of (3-methyl-4-nitrophenyl)methanol.

Fig. S19 ¹H-NMR spectrum of oxidized (3-methyl-4-nitrophenyl)methanol catalyzed by $Fe_3O_4@SiO_2$ -PTMA.

Fig. S20 ¹H-NMR spectrum of 4-methylpentan-2-ol.

Fig. S21 ¹H-NMR spectrum of oxidized 4-methylpentan-2-ol catalyzed by $Fe_3O_4@SiO_2-PTMA$.

Fig. S22 ¹H-NMR spectrum of cyclohexanol.

Fig. S23 ¹H-NMR spectrum of oxidized cyclohexanol catalyzed by Fe₃O₄@SiO₂-PTMA.