SUPPORTING INFORMATION

Hybrid Mesoporous Cu₂ZnSnS₄ (CZTS)-TiO₂ Photocatalyst for Efficient Photocatalytic Conversion of CO₂ into CH₄ under Solar Irradiation

Kidon Kim^a, Abdul Razzaq^a, Saurav Sorcar^a, Yiseul Park^b, Craig A. Grimes^a and Su-Il In^a*

^a Department of Energy System Engineering, DGIST, Daegu 42988, Republic of Korea

^b Division of Nano and Energy Convergence Research, DGIST, Daegu 42988, Republic of Korea

Fig. S1 Schematic representation of experimental setup employed for CO₂ photoreduction involving (1) CO₂ gas cylinder (1000 ppm in He), (2) Mass flow controller, (3) Water bubbler for making CO₂ gas/H₂O vapors mixture, (4) Photoreactor (Stainless Steel, V=15.4 cm³) loaded with photocatalyst material (50 mg of CZTS-TiO₂ sample), irradiated by simulated solar light and (5) Gas chromatography unit for analysis of product gases from photoreactor (equipped with FID and TCD).

Fig. S2 TEM images of hybrid mesoporous CZTS-TiO₂ samples: (a) CT1, (b) CT2, (c) CT3 and (d) CT4. (CT1, CT2, CT3 and CT4 stands for 1.9 mg, 3.8 mg, 5.7 mg and 7.6 mg of CZTS for 0.1 ml of TiCl₄ respectively)

Fig. S3 FESEM-EDS of CT4, representative hybrid CZTS-TiO₂ sample. The presence of elemental C peak might be due to the tape used to hold the CT4 sample, whereas the Pt peak appears due to the Pt sputtering for making the sample conductive for FE-SEM imaging.

Fig. S4 UV-vis DRS of annealed TiO_2 under Air and Ar atmosphere.

Fig. S5 X-ray photoelectron spectroscopy (XPS) of as synthesized TiO_2 showing the regions of (a) Ti 2p, and (b) O1s.

Fig. S6 X-ray photoelectron spectroscopy (XPS) of as-prepared CZTS nanoparticles showing the regions of (a) Cu 2p, (b) Zn 2p, (c) Sn 3d, and (d) S 2p.

Fig. S7 Nitrogen physiosorption isotherms for BET surface area measurement for pure TiO_2 and hybrid mesoporous CZTS-TiO₂ samples (CT1, CT2, CT3 and CT4 stands for 1.9, 3.8, 5.7 and 7.6 mg of CZTS in TiCl₄ respectively).

Fig. S8 Stability test employing sample CT4, synthesized from 7.6 mg CZTS in 0.1 ml TiCl₄, for CO_2 photoreduction under continous simulated solar light illumination for 5 h and 10 h.

Table S1 BET surface area of pure TiO_2 and hybrid mesoporous CZTS- TiO_2 samples (CT1, CT2, CT3 and CT4 stands for 1.9, 3.8, 5.7 and 7.6 mg of CZTS in $TiCl_4$ respectively).

Sample	Surface area	
	$(m^2 \cdot g^{-1})$	
TiO ₂	45.52	
CT1	46.83	
CT2	52.54	
CT3	76.63	
CT4	92.71	

Table S2 Turnover number (TON) and turnover frequency (TOF) for hybrid CZTS-TiO₂ samples (CT1, CT2, CT3 and CT4 stands for 1.9, 3.8, 5.7 and 7.6 mg of CZTS in 0.1 ml of TiCl₄ respectively).

Sample name	aTON	^b TOF (h ⁻¹)
CT1	0.31	0.31
CT2	0.37	0.37
CT3	0.76	0.76
CT4	1.48	1.48
CT4 (5 h)	1.7	0.34
CT4 (10 h)	0.9	0.09

The turnover number (TON) and turnover frequency (TOF) were calculated by using the following equations:^{1,2}

^a TON = $\frac{\text{moles of CH}_4 \text{ produced}}{\text{moles of TiO}_2 \text{ present on the hybrid photocatalyst}}$

^b TOF = $\frac{\text{TON}}{\text{Reaction time(hours)}}$

References:

- 1. Z. Sun, H. Zheng, J. Li, P. Du. Energy Environ. Sci., 2015, 8, 2668-2676.
- 2. A. J. Morris, G. J. Meyer, E. Fujita. Acc. Chem. Res., 2009, 12, 1983-1994.