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Table S1. Comparison of various sorbent materials

Sorbent materials Absorbed substances Sorption capacity (g g-1) Cost Ref.
Wool-based nonwoven diesel, crude oil, SN 150 9-15 low [1]

Vegetable fiber crude oil 1-100 low [2]
Polymers oils and organic solvents 5-25 medium [3]

Nanowire membrane oils and some organic solvents 4-20 low [4]
Exfoliated graphite heavy oil 60-90 low [5]
Activated carbons benzene, toluene <1 low [6]

Carbon nanotube sponges oils and organic solvents 80-180 high [7]
Magnetic exfoliated graphite oils 30-50 high [8]

Graphene/a-FeOOH composite cyclohexane, toluene, vegetable oil, etc. 10-30 high [9]
Graphene/CNT foam compressor oil, organic solvents 80-140 high [10]

Graphene-based sponges oils and organic solvents 60-160 high [11]
Carbonaceous nanofiber 

aerogel
oils and organic solvents 40-115 high [12]

Graphene sponge oils and organic solvents 60-160 high [13]
Reduced graphite oxide foam cyclohexane, chlorobenzene, toluene, 

petroleum, motor oil
5-40 high [14]

Nitrogen doped graphene foam oils and organic solvents 200-600 high [15]
Marshmallow-like gels oils and organic solvents 6-15 high [16]

CNT sponge doped with boron oils and organic solvents 25-125 high [17]
UFAs oils and organic solvents 215-743 high [18]

CNF aerogels oils and organic solvents 106-312 low [19]
TCF aerogel oils and organic solvents 50-192 low [20]

Ultralight magnetic foams oils and organic solvents 61-102 medium [21]
3D macroporous Fe/C oils 4-10 high [22]
Nanocellulose aerogels oils and organic solvents 20-40 medium [23]

Spongy graphene oils and organic solvents 20-86 high [24]
Carbon aerogel from winter 

melon
oils and organic solvents 16-50 low [25]

MCF aerogel oils and organic solvents 22-87 quite 
low

present 
work
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Table S2. Pore volumes of MCF aerogel calculated from the uptake of various organic liquids

Weight gain (g g-1) Density (g cm-3) Pore volume (cm3 g-1)
Gasoline 28.07 0.73 38.45
Diesel oil 32.57 0.83 39.24
Pump oil 74.63 0.87 85.78
Colza oil 40.86 0.93 43.94
DMSO 46.50 1.10 42.27
Ethanol 27.46 0.79 34.76

PEG-200 86.83 1.27 68.37
Methanol 37.42 0.79 47.37
Phenoxin 69.32 1.6 43.33

THF 33.63 0.89 37.79
n-hexane 20.11 0.66 30.47
Acetone 33.40 0.8 41.75

Acetic acid 31.95 1. 05 30.42
Oleic acid 54.50 0.894 60.96

Isopropanol 33.46 0.786 42.57
Epichlorohydrin 35.84 1.181 30.35

Diethylether 21.93 0.713 30.76
Petroleum ether 23.86 0.65 36.71

Toluene 31.80 0.87 36.55
DMF 34.90 0.948 36.81

It can be seen from Table S2 that the pore volumes were calculated based on the sorption 

capacity for organic liquids and their densities. The as-obtained values range from 30.35 to 

85.78 cm3 g-1, which is consistent with pore volumes of ca. 79.31 cm3 g-1 calculated from 

apparent density, but far from that suggested by nitrogen sorption (pore volume of 0.25 cm3 g-

1). The main reason for this difference is that nitrogen sorption measurements are mainly 

suitable to test pores with a size between 0.35 nm and 400 nm, which do not allow for 

quantitative measurement of micrometer-scale pores.

Table S3. Fitting parameters of sorption kinetics of four organic liquids

Organic liquids K (s-1) Qm (%)

Ethanol 0.932 × 10-2 2813.6

Phenoxin 1.654 × 10-2 6893.8

Diesel oil 1.973 × 10-4 3314.7

Colza oil 5.291 × 10-4 4123.4
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0.2 M FeCl3

Impregnation

(b) Drying at 80 ℃

PyrolysisN2, 800 ℃

Cotton
MCF aerogel

Fe-based fibers  

(a) 60 ℃, 3 days

Figure S1. Illustration of the fabrication of MCF aerogel from raw cotton

Figure S2. (a) Photograph of a piece of raw cotton, (b) photograph of a piece of MCF aerogel, 

(c) low-magnificaton SEM image of raw cotton fibers, (d) high magnification SEM images of 

cotton fibers with diameter of 20-30 μm.
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Figure S3. SEM (a) and TEM (b) images of DCC aerogel, respectively.

Figure S4. Photograph of a piece of cotton after absorption of two drop of water stained with 

methylene blue

Figure S5. FTIR spectra of raw cotton and MCF aerogel 
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The spectrum of raw cotton shows the presence of plenty of oxygen-containing functional 

groups, revealed by the strong and broad peaks around 3435 cm-1 ascribed to hydroxyl groups, 

the peak at 1730 cm-1 attributed to carbonyl groups, and the peaks at 1087 cm-1 assigned to C-

O bonds. The band at 1640 cm-1 and 1382 cm-1 are associated with the aromatic C-C 

stretching vibration of graphitic domains and COO- groups accordingly [26, 27]. The thermal 

treatment of Fe-based cotton fibers resulted in a drastic decrease or disappearance of the 

peaks assigned to these oxide groups on raw cotton, indicating that most oxygen-containing 

functional groups were further removed.

Figure S6. Schematic measuring process of the density of MCF aerogel upon Archimedes’ 

principle

The density of MCF aerogel can be tested according to the following experimental details. 

Specifically, we firstly measured the mass of MCF aerogel (denoted as mMCF, mg), and then 

conducted the experiment as shown in Figure S5 to acquire the tension (denoted as F1, mN). 

Upon Archimedes’ principle, the following equation should be established:

GMCF + F1 = Ff

GMCF = mMCF × g = ρMCF ×VMCF × g

Ff = mwater × g = ρwater × Vwater × g
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VMCF = Vwater

Where GMCF was the gravity of MCF aerogel (mN), F1 was the tension read from the spring 

balance (mN), Ff was the buoyancy of MCF aerogel (mN), g was the acceleration of gravity 

(g/mN), mMCF was the mass of MCF aerogel (mg), ρMCF was the density of MCF aerogel 

(mg/cm-3), VMCF was the volume of MCF aerogel (cm-3), mwater was the mass of displaced 

water (mg), Vwater was the volume of the displaced water (cm-3). 

After calculation, ρMCF can be acquired from the following equation. 

ρMCF = (mMCF × ρwater × g)/(mMCF × g + F1)

Figure S7. (a) A piece of the ultralight MCF can be placed on top of a flower, (b and c) 

photographs of a piece of raw cotton (left, b) before and (right, c) after a weight with weight 

of 100 g was placed on its top, (d and e) photographs of a piece of MCF aerogel (left, d) 

before and (right, e) after a weight with weight of 100 g was placed on its top.

Figure S8. (a-c) Photographs of the burning process of a MCF aerogel using a lighter
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Figure S9. TG curves of MCF aerogel conducted under an air and nitrogen atmosphere 

accordingly.

Figure S10. Photographs showing the sorption process of n-hexane by using a MCF aerogel 

taken at intervals of 10 s. n-Hexane stained with Sudan III floating on water was completely 

absorbed within 30 s.
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Figure S11. Sorption efficiency of the MCF aerogel for various organic liquids by volume-

based absorption capacity method
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Figure S12. Sorption kinetics of four organic liquids: (a) ethanol, (b) phenoxin, (c) colza oil, 

and (d) diesel oil.

   

Figure S13. (a) Low- and (b) high-magnification SEM images of MCF aerogel after

5-time sorption-distillation process (Fig. 8b)
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Figure S14. (a) Low- and (b) high-magnification SEM images of MCF aerogel after being 

recycled for 5-time sorption-combustion process (Fig. 8c). Residue particles were observed 

on the fiber surface.   

Figure S15. Low magnification SEM images of the MCF aerogel after being compressed at a 

strain larger than 80 %. The long fibers broke into many short segments after squeezing. The 

ends of broken fibers were indicated by the red arrows.
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