Insight to composition evolution in the synthesis of highperformance Cu/SiO₂ catalysts for CO₂ hydrogenation

Zhi-Qiao Wang,^{ab} Zhong-Ning Xu,^{*ab} Ming-Jian Zhang,^a Qing-Song Chen,^a Yumin Chen,^a and Guo-Cong Guo^{*a}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
^b Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China

Fig. S1 Selectivities to (a) CO, (b) CH_3OH and (c) CH_4 over the reduced Cu/SiO_2 catalysts with different reaction temperature at 3.0 MPa and 16 $L \cdot g_{cat}^{-1} \cdot h^{-1}$.

Fig. S2 N₂ adsorption-desorption isotherms of the reduced Cu/SiO₂ catalysts: (a) Cu-Si-No Cal., (b) Cu-Si-300, (c) Cu-Si-500 and (d) Cu-Si-700.

Fig. S3 BET surface area plots of the reduced Cu/SiO₂ catalysts: (a) Cu-Si-No Cal., (b) Cu-Si-300, (c) Cu-Si-500 and (d) Cu-Si-700.

Fig. S4 Quasi-in-situ Cu 2p XPS spectra of the reduced Cu/SiO₂ catalysts: (a) Cu-Si-No Cal., (b) Cu-Si-300, (c) Cu-Si-500, (d) Cu-Si-700.

Fig. S5 FT-IR spectra of the calcined Cu-Si-O-T precursors: (a) Cu-Si-O-No Cal., (b) Cu-Si-O-300, (c) Cu-Si-O-500, (d) Cu-Si-O-700.

Fig. S6 H₂-TPR profiles of the calcined Cu-Si-O-T precursors: (a) Cu-Si-O-No Cal., (b) Cu-Si-O-300, (c) Cu-Si-O-500, (d) Cu-Si-O-700.