SUPPORTING INFORMATION

Influence of the aromatic moiety in α- and β-arylalanines on their biotransformation with phenylalanine 2,3-aminomutase from *Pantoea agglomerans*[†]

A. Varga^a, G. Bánóczi^b, B. Nagy^a, L. C. Bencze^a, M. I.Toşa^a, Á. Gellért^c, F. D. Irimie^a, J. Rétey^d, L. Poppe^{b*,e} and C. Paizs^{a*}

Table of Contents

1. ¹ H- and ¹⁹ F-NMR spectra of the enzymatic transformations	2
2. HPLC monitoring of the enzymatic reactions	12
2.1 Determination of conversion and molar fraction values	12
2.2 HPLC analysis of the <i>Pa</i> PAM-catalysed reactions after 20 h	14
3. Time-course profiles of the <i>Pa</i> PAM-catalysed reactions	18
4. HPLC determination of the enantiomeric compositions	22
5. Enzymatic reaction starting from (\pm) - β -phenylalanine 2a and (S) - β -phenylalanine (S) - 2a	38

1. ¹H- and ¹⁹F-NMR spectra of the enzymatic transformations

Results presented in Table 1 and Table 2 (see main manuscript) show the relative molar fractions for each component of enzymatic reaction mixtures, calculated from the integral values of the clearly distinguishable ¹H- or ¹⁹F-NMR signals assigned for each substance.

¹H-NMR of the products of *Pa*PAM-catalysed transformation of (±)-α-phenylalanine *rac*-1a

¹H-NMR of the products of *Pa*PAM-catalysed transformation of (\pm)- α -(thiophen-2-yl)alanine *rac*-1b

¹H-NMR of the products of *Pa*PAM-catalysed transformation of(\pm)-4-bromo- α -phenylalanine *rac*-1c

¹⁹F-NMR of the products of *Pa*PAM-catalysed transformation of (\pm)-2-fluoro- α -phenylalanine *rac*-1d

¹⁹F-NMR of the products of *Pa*PAM-catalysed transformation of (\pm)-3-fluoro- α -phenylalanine *rac*-1e

¹⁹F-NMR of the products of *Pa*PAM-catalysed transformation of (±)-4-fluoro- α -phenylalanine *rac*-1f

¹H-NMR of the products of *Pa*PAM-catalysed transformation of (\pm)-3-chloro- α -phenylalanine *rac*-1h

¹H-NMR of the products of *Pa*PAM-catalysed transformation of (\pm)-4-chloro- α -phenylalanine *rac*-1i

¹H-NMR of the products of *Pa*PAM-catalysed transformation of (\pm) -3-nitro- α -phenylalanine *rac*-1k

¹H-NMR of the products of *Pa*PAM-catalysed transformation of (±)-4-nitro- α -phenylalanine *rac*-11

¹H-NMR of the products of *Pa*PAM-catalysed transformation of (\pm) - β -phenylalanine *rac*-**2a**

¹H-NMR of the products of *Pa*PAM-catalysed transformation of (\pm) - β -(thiophen-2-yl)alanine *rac*-**2b**

¹H-NMR of the products of *Pa*PAM-catalysed transformation of (\pm)-4-bromo- β -phenylalanine *rac*-2c

¹⁹F-NMR of the products of *Pa*PAM-catalysed transformation of (±)-2-fluoro- β -phenylalanine *rac*-2d

¹⁹F-NMR of the products of *Pa*PAM-catalysed transformation of (\pm)-3-fluoro- β -phenylalanine *rac*-2e

¹⁹F-NMR of the products of *Pa*PAM-catalysed transformation of (±)-4-fluoro- β -phenylalanine *rac*-**2f**

¹H-NMR of *Pa*PAM-catalysed transformation of (\pm) -2-chloro- β -phenylalanine *rac*-2g

2. HPLC monitoring of the enzymatic reactions

2.1 Determination of conversion and molar fraction values

In order to determine the conversion and/or molar fractions of the products of *Pa*PAM-catalysed enzymatic transformations, the response factor of each compound was determined by mixtures of known composition of authentic racemic α - and β -amino acids and the corresponding arylacrylate injected onto Gemini NX-C-18 column (150 × 4.6 mm × 5 µm). Mobile phase: A: NH₄OH buffer (0.1 M, pH 9.0) / B: MeOH, flow rate: 0.9 mL/min, measurements performed at 20°C. Reverse phase HPLC analyses were performed on an Agilent 1100 Series system equipped with a G1379A degasser, G1311A quaternary pump, a G1329A autosampler, a G1316A temperature controlled column compartment and a G1315B diode array detector.

Table S1. HPLC conditions and response factors								
Aryl moiety in 1,2,3	Eluent*	λ	Res	Response factor**				
	[% B]	[nm]	2 vs 1	3 vs 1	3 <i>vs</i> 2			
Phenyl	10 to 39 in 12 min	220	1.988	0.161	0.084			
Thiophen-2-yl	10 to 39 in 12 min	250	1.146	0.413	0.387			
4-Bromophenyl	20 to 54 in 12min	220	1.857	0.372	0.222			
2-Fluorophenyl	10 to 39 in 12 min	220	1.249	0.139	0.119			
3-Fluorophenyl	10 to 39 in 12min	220	3.039	0.156	0.05			
4-Fluorophenyl	10 to 39 in 12 min	220	1.388	0.123	0.095			
2-Chlorophenyl	10 to 39 in 12 min	220	—	_	0.386			
3-Chlorophenyl	15 to 50 in 15 min	220	0.817	0.265	-			
4-Chlorophenyl	15 to 50 in 15 min	220	0.948	0.679	_			
2-Nitrophenyl	10 to 50 in 15 min	260	_	_	0.019			
3-Nitrophenyl	10 to 50 in 15 min	260	2.238	0.144	-			
4-Nitrophenyl	10 to 50 in 15 min	220	1.138	1.228	_			

*Eluent A: NH₄OH buffer (0.1 M, pH 9.0); **B**: MeOH

** 1– rac- α -arylalanine; 2– rac- β -arylalanine; 3 – arylacrylate

740	p ur y iuiuiii	nes unter 20 m	
Aryl moiety in	x_2	$x_{(S)-1}$	x_3
1,2,3	[%]	[%]	[%]
Phenyl	73.9	24.3	1.8
Thiophenyl-2-yl	73.1	24.6	2.3
4-Bromophenyl	92.8	6.2	1
2-Fluorophenyl	54	41.5	4.5
3-Fluorophenyl	74.8	20.3	4.9
4-Fluorophenyl	78.3	20	1.7
2-Chlorophenyl	53.5	44.4	2.5
2-Nitrophenyl	90.8	9.2	0

Table S2. Relative molar fractions of the products in the enzymatic reactions of rac- β -arylalanines after 20 h

 x_2 , $x_{(S)-1}$ and x_3 represent the relative molar fractions of the reaction components as determined by HPLC on Gemini NX-C-18 column

 Table S3. Relative molar fractions of the products in the enzymatic reactions of rac-arylalanines after 20 h

Arvl moietv in	<i>X</i> ₂	$\mathbf{x}_{(S)}$ 1	<i>X</i> ₃
1,2,3	[%]	[%]	[%]
Phenyl	68.3	28.9	2.8
Thiophenyl-2-yl	76.1	17.7	6.2
4-Bromophenyl	82.9	17.1	0
2-Fluorophenyl	88.3	9.3	2.4
3-Fluorophenyl	60.9	37.9	1.2
4-Fluorophenyl	75.5	23.3	1.2
3-Chlorophenyl	82.8	16.0	1.2
4-Chlorophenyl	83.9	16.1	0
3-Nitrophenyl	76.8	23.0	0.2
4-Nitrophenyl	94.3	5.7	0

 x_1 , $x_{(S)-2}$ and x_3 represent the relative molar fractions of the reaction components as determined by HPLC on Gemini NX-C-18 column

Products from (\pm) - β -phenylalanine (*rac*-**2a**) by *Pa*PAM after 20 h.

Products from (\pm) - β -(thiophen-2-yl)alanine (*rac*-**2b**) by *Pa*PAM after 20 h.

Products from (±)-4-bromo- β -phenylalanine (*rac*-2c) by *Pa*PAM after 20 h.

Products from (±)-2-fluoro- β -phenylalanine (*rac*-2d) by *Pa*PAM after 20 h.

Products from (±)-3-fluoro- β -phenylalanine (*rac*-**2e**) by *Pa*PAM after 20 h.

Products from (±)-4-fluoro- β -phenylalanine (*rac*-**2f**) by *Pa*PAM after 20 h.

Products from (±)-2-chloro- β -phenylalanine (*rac*-**2g**) by *Pa*PAM after 20 h.

Products from (±)-2-nitro- β -phenylalanine (*rac*-**2j**) by *Pa*PAM after 20 h.

3. Time-course profiles of the PaPAM-catalysed reactions

Into the solution of the substrate (*rac*-1a-f,h,i,k,lor*rac*-2a-g,j, 4 mg) in $(NH_4)_2CO_3$ buffer (100 mM, pH 8.0, 2 mL), *Pa*PAM (1.6 mg) was added and the reaction mixture was stirred at room temperature. Sample preparations and HPLC measurements were performed as described in experimental section in main manuscript.

Time-course profile of the conversion of (\pm) - β -phenylalanine (*rac*-2**a**, \blacklozenge) to (*S*)- α -phenylalanine [(*S*)-1**a**] and (*E*)-cinnamic acid (3**a**, ②)

Time-course profile of the conversion of (\pm) - β -(thiophen-2-yl)alanine (*rac*-2b, \blacklozenge) to (*S*)- α -(thiophen-2-yl)alanine [(*S*)-1b)] and (*E*)-3-(thiophen-2-yl)acrylic acid (3b, O)

Time-course profile of the conversion of (\pm) -4-bromo- β -phenylalanine (*rac*-2c, \blacklozenge) to (*S*)-4-bromo- α -phenylalanine [(*S*)-1c)] and (*E*)-4-bromocinnamic acid (3c, O)

Time-course profile of the conversion of (\pm) -4-fluoro- β -phenylalanine (*rac*-2d, \blacklozenge) to (*S*)-4-fluoro- α -phenylalanine [(*S*)-1d)] and (*E*)-4-fluorocinnamic acid (3d, O)

Time-course profile of the conversion of (\pm) -3-fluoro- β -phenylalanine (*rac*-2e, \blacklozenge) to (*S*)-3-fluoro- α -phenylalanine [(*S*)-1e)] and (*E*)-4-fluorocinnamic acid (3e, O)

Time-course profile of the conversion of (\pm) -4-fluoro- β -phenylalanine (*rac*-2f, \blacklozenge) to(*S*)-4-fluoro- α -phenylalanine [(*S*)-1f)] and (*E*)-4-fluorocinnamic acid (3f, O)

Time-course profile of the conversion of (\pm) -2-chloro- β -phenylalanine (*rac*-2g, \blacklozenge) to (*S*)-2-chloro- α -phenylalanine [(*S*)-1g)] and (*E*)-2-chlorocinnamic acid (3g, O)

Time-course profile of the conversion of (\pm) -2-nitro- β -phenylalanine (*rac*-2j) to (*S*)-2-nitro- α -phenylalanine [(*S*)-1j, \blacklozenge]

4. HPLC determination of the enantiomeric compositions

Samples taken from the enzymatic reactions after 20 h as described in section 2 were injected onto Crownpak[®] CR-I(+)column (150 × 3.0 mm × 5 μ m) using HClO₄ solution (pH 1.5) : acetonitrile as mobile phase, flow rate: 0.4mLmin⁻¹or onto Chiralpak[®] ZWIX (+) column (250 × 4.6 mm × 3 μ m) using MeOH (50 mM diethylamine, 100 mM formic acid) : acetonitrile : H₂O, 49:49:2 as mobile phase, flow rate: 1 mL/min.

Products from (±)-α-phenylalanine (*rac*-1a) by *Pa*PAM after 20 h [Chiralpak ZWIX (+) column]

Enantioseparation of authentic (\pm)- β -phenylalanine (*rac*-**2a**) on Chiralpak ZWIX(+) column

Enantioseparation of authentic (\pm)- β -phenylalanine (*rac*-**2a**) on Crownpak CR-I(+) column

Products from (±)-α-(thiophen-2-yl)alanine (*rac*-1b) by *Pa*PAM after 20 h [Chiralpak ZWIX(+) column]

Enantioseparation of authentic (\pm)- β -(thiophen-2-yl)alanine (*rac*-**2b**) and (\pm)- α -(thiophen-2-yl)alanine (*rac*-**1b**) on Chiralpak ZWIX(+) column

[Crownpak CR-I(+)column]

Enantioseparation of authentic (\pm)- β -(thiophen-2-yl)alanine (*rac*-**2b**) and (\pm)- α -(thiophen-2-yl)alanine (*rac*-**1b**) on Crownpak CR-I(+) column

[Chiralpak ZWIX(+) column]

on Chiralpak ZWIX(+) column

[Crownpak CR-I(+)column]

Products from (±)-4-fluoro-β-phenylalanine (*rac*-2d) by *Pa*PAM after 20 h [Crownpak CR-I(+)column]

Enantioseparation of authentic (\pm)-4-fluoro- α -phenylalanine and (\pm)-4-fluoro- β -phenylalanine on Crownpak CR-I(+)column

ts from (\pm) -3-fluoro- α -phenylalanine (*rac*-**le**) by *PaPAM* after [Crownpak CR-I(+)column]

Enantioseparation of authentic (\pm)-3-fluoro- α -phenylalanine (*rac*-1e) and (\pm)-3-fluoro- β -phenylalanine (*rac*-2e) on Crownpak CR-I(\pm)column

Products from (±)-4-fluoro-β-phenylalanine (*rac*-2f) by *Pa*PAM after 20 h [Crownpak CR-I(+) column]

Enantioseparation of authentic (\pm)-4-fluoro- α -phenylalanine (*rac*-1f) and (\pm)-4-fluoro- β -phenylalanine (*rac*-2f) on Crownpak CR-I(+)column

Products from (±)-2-chloro-β-phenylalanine (*rac*-**2g**) by *Pa*PAM after 20 h [Crownpak CR-I(+) column]

Enantioseparation of authentic (\pm)-2-chloro- α -phenylalanine (*rac*-**1g**) and (\pm)-2-chloro- β -phenylalanine (*rac*-**2g**) on Crownpak CR-I(+) column

[Crownpak CR-I(+)column]

[Chiralpak ZWIX (+) column]

Chiralpak ZWIX(+) column

Enantioseparation of authentic (\pm)-4-nitro- α -phenylalanine (*rac*-1j) and (\pm)-4-nitro- β -phenylalanine (*rac*-2j) onCrownpak CR-I(+) column

[Chiralpack ZWIX(+) column]

Enantioseparation of authentic (\pm)-4-nitro- α -phenylalanine (*rac*-11) and (\pm)-4-nitro- β -phenylalanine (*rac*-21) on Chiralpak ZWIX(+) column

5. Enzymatic reaction starting from (±)-β-phenylalanine 2a and (S)-β-phenylalanine (S)-2a

The time course profiles of the product formation in *Pa*PAM catalysed reactions from (*S*)- β -phenylalanine and (±)- β -phenylalanine were determined HPLC on Gemini NX-C-18 column (see Section 2.2 in the Supplementary material).

Time course profiles: (A) conversion of (S)- β -phenylalanine [5 mM, (S)-**2a**] into (S)- α -phenylalanine [(S)-**1a**, \blacklozenge] and cinnamic acid (**2a**, \bigcirc); (B) conversion of (\pm) - β -phenylalanine (10 mM, **2a**) into (S)- α -phenylalanine [(S)-**1a**, O] and cinnamic acid (**2a**, \times)

6. SDS-PAGE analysis of the purified *Pa*PAM enzyme

The purity of the *Pa*PAM was verified by SDS-PAGE analysis. The samples were boiled for 5 min in Laemmli buffer, and were loaded on a 12% SDS-PAGE.

Figure S1.Purification of *Pa*PAM with Ni-NTA. Lane **A**: protein ladder, Lane **B**: supernatant, Lane **C**: flow through, Lane **D**: pellet, Lane **E**: LS1, Lane **F**: HS, Lane **G**: LS2, Lane **H**: 20 mM Imidazole, Lane **I**: 350 mM Imidazole, Lane **J**: 1 mM Imidazole. The samples were prepared as described in experimental section.