Supplementary Information

CO₂ fixation at atmospheric pressure: porous ZnSnO₃ nanocrystals as highly efficient catalyst for synthesis of cyclic carbonates

Susmita Roy,^{a§} Biplab Banerjee,^{b§} Asim Bhaumik^{b*} and Sk. Manirul Islam^{a*}

^aDepartment of Chemistry, University of Kalyani, Nadia, 741235, West Bengal, India.

^bDepartment of Material Science, Indian Association for the Cultivation of Science, Kolkata-

700032, India.

§These two authors have equally contributed in this work

Figure S1. Wide angle powder XRD pattern of meso-SnO₂

Figure S2. Wide angle powder XRD pattern of meso-ZnO

Figure S3. N₂ adsorption-desorption isotherm of the meso SnO₂. Pore size distribution (PSD) is shown in the inset of the figure employing NLDFT model.

Figure S4. N₂ adsorption-desorption isotherm of the meso ZnO. Pore size distribution (PSD) is shown in the inset of the figure employing NLDFT model.

Figure S5. TGA profile of MZS-1 catalyst.

Analytical Data of Synthesized Cyclic carbonates

4-phenyl-1,3-dioxolan-2-one (Table 2, entry 1)

White solid, ¹H NMR (400 MHz, CDCl₃): δ 4.28 (t, *J* = 8.4 Hz, 1H), 4.73 (t, *J* = 8.4 Hz, 1H), 5.61 (t, *J* = 8.0 Hz, 1H), 7.28-7.30 (m, 2H), 7.33-7.41 (m, 3H) ppm.; ¹³C NMR (100.0 MHz, CDCl₃) δ 71.2, 77.8, 125.8, 129.1, 129.7, 135.8, 154.9 ppm

4-(phenoxymethyl)-1,3-dioxolan-2-one (Table 2, entry 2)

White solid. ¹H NMR (400 MHz, CDCl₃): δ 4.18 (dd, *J* = 11.2, 4.8 Hz, 1H), 4.26 (dd, *J*= 11.4, 2.8 Hz, 1H), 4.36-4.39 (m, 1H), 4.62 (t, *J* = 8.1 Hz, 1H), 5.12-5.16 (m, 1H), 6.93-6.98 (m, 3H), 7.28-7.32 (m, 2H) ppm; ¹³C NMR (100.0 MHz, CDCl₃) δ 66.0, 67.3, 74.8, 114.6, 121.2, 129.5, 154.8, 157.9 ppm.

4-(isopropoxymethyl)-1,3-dioxolan-2-one (Table 2, entry 3)

Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 1.57 (d, J = 5.6 Hz, 6 H), 3.59-3.68 (m, 3 H), 4.36-4.41 (m, 1H), 4.47 (t, J = 8.5 Hz, 1 **H**), 4.76-4.80 (m, 1 H); ¹³C NMR (100.6 MHz, CDCl₃) δ 21.5, 21.6, 66.2, 66.9, 72.7, 75.1, 155.0.

4-methyl-1,3-dioxolan-2-one (Table 2, entry 4)

Yellowish oil, ¹H NMR (400 MHz, CDCl₃) δ 1.50 (d, *J* = 6.4 Hz, 1 H), 4.02-4.06 (m, 1 H), 4.57 (t, *J* = 8.4 Hz, 1 H), 4.83-4.91 (m, 1 H) ppm.; ¹³C NMR (100 MHz, CDCl3) δ 19.4, 70.6, 73.5, 155.0 ppm.

2-(allyloxymethyl)oxirane (Table 2, entry 5)

Colourless liquid; ¹H NMR (500 MHz, CDCl₃) δ 3.58-3.70 (m, 2 H), 4.03-4.05 (m, 2 H), 4.36-4.40 (m, 1H), 4.49 (t, *J* = 8 Hz, 1 H), 4.78-4.84 (m, 2H), 5.80-5.89 (m, 2H) ppm.; ¹³C NMR (125 MHz, CDCl₃) δ 66.4, 68.9, 72.7, 75.1, 118.0, 133.7, 155.0 ppm.

4-(Hydroxymethyl)-1,3-dioxolan-2-one (Table 2, entry 6)

¹**H NMR (400 MHz, CDCl3)** δ 4.81 (m, 1 H), 4.59 – 4.43 (m, 2 H), 4.00 (ddd, *J* = 12.8, 5.0, 2.9 Hz, 1 H), 3.72 (ddd, *J* = 12.8, 6.6, 3.4 Hz, 1 H), 2.80 (br s, 1 H) ppm. ¹³**C NMR** (75 MHz, CDCl3) δ 156.0, 76.7, 65.8, 61.0 ppm.

4-(chloromethyl)-1,3-dioxolan-2-one (Table 2, entry 7)

Yellowish oil, ¹H NMR (400 MHz, CDCl₃) δ 3.70 (dd, J = 12.2, 3.6 Hz, 1H), 3.79 (dd, J = 12.2, 4.8 Hz, 1H), 4.36-4.40 (m, 1 H), 4.57 (t, J = 8.4 Hz, 1 H), 4.95-5.0 (m, 1H) ppm.; ^{13C} NMR (100 MHz, CDCl₃) δ 43.9, 67.0, 74.4, 154.8 ppm.

Scan copies of ¹H and ¹³C NMR Spectra

	Table 2, entry 4 ¹³ C NMR, 100 MHz, CDCl ₃				
an externation and a state a		han and the stand of		ารการไปประชาวรูปรังคารใช้สามาร์สามาร์	landerup versen det en son son det en son de service de service de service de service de service de service de
190 180 170 160	150 140 130 120	110 100	90 80 70	60 50 40	30 20 10 ppm

		но		
		Table 2, entry 6, ¹³ c NMR, 100 MHz, CDCl ₃		
190 180 170	160 150	140 130 120 110 100 90	80 70 60 50	40 30 20 10 ppm

