Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

1	Supplementary Information for
2	Stable isotope labeling nitrogen metabolism in microcystin biosynthesis
3 4	
5	Zhen-Lian Han ^{a, b, c, d} , Xiao-Shuang Shi ^d , Yue-Tong Ji ^d , Xiao-Ming Tan ^d , Fa-Li Bai ^d ,
6	Xian-ZhengYuan ^{a, d*} , Yi-Qian Wang ^{c*} , Rong-Bo Guo ^{d*}
7	
8	a State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao
9	Brewery Co., Ltd, Qingdao 266100, China
10	b College Material Science & Engineering, Qingdao University, Qingdao, Shandong
11	Province 266071, P. R. China
12	c Cultivation Base State Key Lab, Qingdao University, Qingdao, Shandong Province
13	266071, P. R. China
14	d Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess
15	Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, P.
16	R. China
17	
18	* Corresponding Author:
19	Xian-Zheng YUAN; E-mail: yuanxz@qibebt.ac.cn; Tel./Fax:+86 532 80662750
20	Yi-Qian WANG; E-mail: yqwang@qdu.edu.cn; Tel./Fax:+86 532 83780318
21	Rong-Bo GUO; E-mail: guorb@qibebt.ac.cn; Tel./Fax: +86 532 80662750
22	

1 List of Figures

2	Fig. S1: HPLC chromatograms of MC-LR and purified ¹⁵ N-MC-LR
3	Fig. S2: MS/MS spectra of MC-LR standard (m/z=995.5)
4	Fig. S3 : MS/MS spectra of ${}^{15}N_1$ -MC (m/z=996.5)
5	Fig. S4: MS/MS spectra of ${}^{15}N_2$ -MC (m/z=997.5)
6	Fig. S5 : MS/MS spectra of ¹⁵ N ₃ -MC (m/z=998.5)
7	Fig. S6: MS/MS spectra of ${}^{15}N_4$ -MC (m/z=999.5)
8	Fig. S7: MS/MS spectra of ${}^{15}N_5$ -MC (m/z=1000.5)
9	Fig. S8: MS/MS spectra of ${}^{15}N_6$ -MC (m/z=1001.5)
10	Fig. S9: MS/MS spectra of ${}^{15}N_7$ -MC (m/z=1002.5)
11	Fig. S10: MS/MS spectra of ${}^{15}N_8$ -MC (m/z=1003.5)
12	Fig. S11: MS/MS spectra of ¹⁵ N ₉ -MC (m/z=1004.5)
13	Fig. S12: MS/MS spectra of ${}^{15}N_{10}$ -MC (m/z=1005.5)
14	Fig. S13: Growth curve of ¹⁵ N-labeled MA and variants of ammonia in
15	cultivation of the 5 th generation \blacksquare : MA, \blacktriangle : ammonia
16	
17	
18	
19	
20	
21	
22	

the

- 1 List of Tables
- 2 Table S1: Components of BG11 medium
- 3 Table S2: Gradient elution of HPLC (A: % 5 acetonitrile containing 0.1%
- 4 formic acid B: acetonitrile containing 0.1% formic acid)
- 5 Table S3: Gradient elution of HPLC (A: 0.1% formic acid B: methanol)
- 6 Table S4: Major Raman spectral shifts in wavenumber shifts detected due to ¹⁵N
- 7 incorporation
- 8 Table S5: MS-MS parent ion and daughter ions for m/z 996.5, 997.5, 998.5, 999.5,
- 9 1000.5, 1001.5, 1002.5, 1003.5, 1004.5 and 1005.5

1	Table S1:	Components	of BG11medium
---	-----------	------------	---------------

Component	Concentration(g/L)
NaNO ₃	1.5
K ₂ HPO ₄	0.04
MgSO ₄	0.075
CaCl ₂ ·2H2O	0.036
Citric	0.006
Ferric Citrate	0.006
Na ₂ -EDTA	0.001
Na ₂ CO ₃	0.02
H ₃ BO ₃	0.00286
MnCl ₂ ·4H ₂ O	0.00181
ZnSO ₄ ·7H ₂ O	0.000222
Na_2MoO_4 ·2H ₂ O	0.00039
CuSO ₄ ·5H ₂ O	0.000079
Co(NO ₃) ₂ ·6H2O	0.0000494

1 Table S2: Gradient elution of HPLC (A: %5 acetonitrile containing 0.1% formic acid

Retention time (min)	% A	% B
0	70	30
20	60	40
25	10	90
28	70	30
28.1	70	30
35	70	30

2 B: acetonitrile containing 0.1% formic acid)

4	
5	
6	
7	

	Retention time (min)	% A	% B
	0	99	1
	5	99	1
	10	85	15
	20	0	100
	30	0	100
2			
3			
4			
5			
6			
7			
8			
_			
9			
10			
10			
1.1			
11			
10			
12			
10			
13			
14			
14			
15			
15			

1 Table S3: Gradient elution of HPLC (A: 0.1% formic acid B: methanol)

	-		
	Unlabeled (cm ⁻¹)	$^{15}N (\Delta \text{ cm}^{-1})$	Assignment
	1259	-10	Amide III
	1452	-12	Arg N-C-N asymmetric stretch, Arg C-N-H side chain vibrations, Arg C-H vibrations
	1644	-24	Amide I (C=O), water in aqueous peptide sample
3			
4			
5			
6			
7			
8			
9			
10			
11			

1 Table S4: Major Raman spectral shifts in wavenumber shifts detected due to ¹⁵N

2 incorporation

Parent ions	Daughter ions	Identity
996.5 (M+H+1 ¹⁵ N)	600	Arg-Adda-Glu+H+1 ¹⁵ N/MeAsp-Arg-Adda+H+1 ¹⁵ N
	470	Ala-Leu-MeAsp-Arg+H
	553	Mdha-Ala-Leu-MeAsp-Arg+H
	711	Adda-Glu-Mdha-Ala-Leu+H+1 ¹⁵ N
	865	Mdha-Ala-Leu-MeAsp-Arg-Adda+H
	867	Arg-Adda-Glu-Mdha-Ala-Leu+H+1 ¹⁵
997.5 (M+H+2 ¹⁵ N)	600	Arg-Adda-Glu+H+1 ¹⁵ N/MeAsp-Arg-Adda+H+1 ¹⁵ N
	471	Ala-Leu-MeAsp-Arg+H+1 ¹⁵ N
	554	Mdha-Ala-Leu-MeAsp-Arg+H+1 ¹⁵ N
	712	Adda-Glu-Mdha-Ala-Leu+H+2 ¹⁵ N
	868	Arg-Adda-Glu-Mdha-Ala-Leu+H+2 ¹⁵ N
	925	Leu-MeAsp-Arg-Adda-Glu-Mdha+H+1 ¹⁵ N
998.5 (M+H+3 ¹⁵ N)	601	Arg-Adda-Glu+H+2 ¹⁵ N/MeAsp-Arg-Adda+H+2 ¹⁵ N
	472	Ala-Leu-MeAsp-Arg+H+2 ¹⁵ N
	555	Mdha-Ala-Leu-MeAsp-Arg+H+2 ¹⁵ N
	868	Mdha-Ala-Leu-MeAsp-Arg-Adda+H+3 ¹⁵ N
	868	Arg-Adda-Glu-Mdha-Ala-Leu+H+2 ¹⁵ N
	926	Leu-MeAsp-Arg-Adda-Glu-Mdha+H+2 ¹⁵ N
999.5	602	Arg-Adda-Glu+H+3 ¹⁵ N/MeAsp-Arg-
$(M+H+4^{15}N)$		Adda+H+3 ¹⁵ N
	473	Ala-Leu-MeAsp-Arg+H+3 ¹⁵ N
	870	Arg-Adda-Glu-Mdha-Ala-Leu+H+4 ¹⁵ N
1000.5 (M+H+5 ¹⁵ N)	602	Arg-Adda-Glu+H+3 ¹⁵ N/MeAsp-Arg-Adda+H+3 ¹⁵ N
	473	Ala-Leu-MeAsp-Arg+H+3 ¹⁵ N
	557	Mdha-Ala-Leu-MeAsp-Arg+H+4 ¹⁵ N
	870	Arg-Adda-Glu-Mdha-Ala-Leu+H+4 ¹⁵ N
	928	Leu-MeAsp-Arg-Adda-Glu-Mdha+H+4 ¹⁵ N
1001.5 (M+H+6 ¹⁵ N)	602	Arg-Adda-Glu+H+3 ¹⁵ N/MeAsp-Arg-Adda+H+3 ¹⁵ N
	474	Ala-Leu-MeAsp-Arg+H+4 ¹⁵ N
	558	Mdha-Ala-Leu-MeAsp-Arg+H+5 ¹⁵ N
	714	Adda-Glu-Mdha-Ala-Leu+H++4 ¹⁵ N
	871	Mdha-Ala-Leu-MeAsp-Arg-Adda+H+6 ¹⁵ N

Table S5: MS-MS parent ion and daughter ions for m/z 996.5, 997.5, 998.5, 999.5,
1000.5, 1001.5, 1002.5, 1003.5, 1004.5 and 1005.5

	929	Leu-MeAsp-Arg-Adda-Glu-Mdha+H+5 ¹⁵ N
1002.5 (M+H+7 ¹⁵ N)	603	Arg-Adda-Glu+H+4 ¹⁵ N/MeAsp-Arg-Adda+H+4 ¹⁵ N
	474	Ala-Leu-MeAsp-Arg+H+4 ¹⁵ N
	558	Mdha-Ala-Leu-MeAsp-Arg+H+5 ¹⁵ N
	872	Mdha-Ala-Leu-MeAsp-Arg-Adda+H+7 ¹⁵ N
	930	Leu-MeAsp-Arg-Adda-Glu-Mdha+H+6 ¹⁵ N
1003.5	(04	
(M+H+8 ¹⁵ N)	604	Arg-Adda-Glu+H+5 ¹³ N/MeAsp-Arg-Adda+H+5 ¹³ N
	475	Ala-Leu-MeAsp-Arg+H+5 ¹⁵ N
	559	Mdha-Ala-Leu-MeAsp-Arg+H+6 ¹⁵ N
1004.5 (M+H+9 ¹⁵ N)	560	Mdha-Ala-Leu-MeAsp-Arg+H+7 ¹⁵ N
	476	Ala-Leu-MeAsp-Arg+H+6 ¹⁵ N
	932	Leu-MeAsp-Arg-Adda-Glu-Mdha+H+8 ¹⁵ N
1005.5 (M+H+10 ¹⁵ N)	561	Mdha-Ala-Leu-MeAsp-Arg+H+8 ¹⁵ N
	605	Arg-Adda-Glu+H+6 ¹⁵ N/MeAsp-Arg- Adda+H+6 ¹⁵ N
	477	Ala-Leu-MeAsp-Arg+H+7 ¹⁵ N
	875	Mdha-Ala-Leu-MeAsp-Arg-Adda+H+10 ¹⁵ N

S10

1 2

Fig. S2: MS/MS spectra of MC-LR standard (m/z=995.5)

Fig. S4: MS/MS spectra of ¹⁵N₂-MC (m/z=997.5)

Fig. S5: MS/MS spectra of ¹⁵N₃-MC (m/z=998.5)

Fig. S6: MS/MS spectra of ¹⁵N₄-MC (m/z=999.5)

Fig. S7: MS/MS spectra of ¹⁵N₅-MC (m/z=1000.5)

Fig. S8: MS/MS spectra of ${}^{15}N_6$ -MC (m/z=1001.5)

3

