Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Mg(ClO₄)₂-Promoted [4 + 3] Cycloaddition of Oxindole Derivatives with Conjugated Dienes: Concise Synthesis of Spirocycloheptane Oxindole Derivatives

Yun Liu, Zhou Sun, Song Li, Kuirong Xiang, Yuan Zhang,* and Ying Li*

State Key Laboratory of Applied Organic Chemistry Lanzhou University, 222nd Tianshui South Rd, Lanzhou 730000, Gansu, P. R. China

Fax: +86-931-8912582; E-mail: liying@lzu.edu.cn.

Table of Contents

- 1.General Information.
- 2. Optimization of the reaction condition.
- 3. Preparation of Substrates 3a-3k and Analytic Data.
- 4. Synthesis of Products 5a-5k and Analytic Data.
- 5. Additional Experiments.
- 6. Relative Configuration and X-Ray Analysis Data.
- 7.References.

1. General information

Chemicals were either purchased or purified by standard techniques without special instructions. CH_2Cl_2 was dried by distillation over CaH_2 . THF was dried by distillation over Na/K. All moisture-sensitive reactions were performed under an atmosphere of Ar. The silica gel (200-300 meshes) was used for column chromatography and TLC inspections were on silica gel GF254 plates. 1H NMR and ^{13}C NMR spectra were measured on a Bruker AM 400 MHz spectrometer, using $CDCl_3$ as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. Chemical shifts (δ) are given in ppm relative to TMS, the coupling constants J are given in Hz. IR spectra were recorded on a *Nicolet NEXUS* 670 FT-IR spectrometer. High-resolution mass spectral analysis (HRMS) data were measured on the Bruker Apex II by means of the ESI technique. Melting points were measured on an XT-4 melting point apparatus and were uncorrected.

2. Optimization of the reaction condition.

Table 1. Optimization of the reaction condition.^a

Entry	Conditions	Solvent	T(°C)	Yield(%) ^c
1	TFA	DCM	-78 to 0	trace ^d
2	TfOH	DCM	-78 to 0	$trace^d$
3	TsOAg	DCM	-78 to rt	NR^e
4	Tf ₂ O/2,6-Lutidine	DCM	-78 to rt	ND^e
5	CSA	DCM	-78 to rt	NR^e
6	HClO ₄	DCM	-78	ND^e
7	$SnCl_4$	DCM	-78 to rt	18
8	$ZnCl_2$	DCM	rt	30
9	$ZnCl_2$	THF	rt	NR^e
10	FeCl ₃	DCM	-78 to rt	NR^e
11	$CuCl_2$	DCM	-78 to rt	NR^e
12^{b}	$AuCl_3$	DCM	-78	17
13^{b}	$AuCl_3$	THF	-78	NR^e
14^b	$AuCl_3$	Et_2O	-78	13
15^{b}	$InBr_3$	DCM	-20	12
16^b	$InCl_3$	DCM	-20	15
17^{b}	$In(OAc)_3$	DCM	-20	ND^e
18	TiCl ₄	DCM	-78	ND^e
19	$Zn(ClO_4)_2$	DCM	rt	NR^e
20	$Mg(ClO_4)_2$	DCM	0	<5
21	$Mg(ClO_4)_2$	DCM	rt	58
22	$Mg(ClO_4)_2$	DCM	reflux	ND^e
23	$Mg(ClO_4)_2$	THF	rt	20
24	$Mg(ClO_4)_2$	Et_2O	rt	25
25	$Mg(ClO_4)_2$	Tol	rt	NR^e
26	$Mg(ClO_4)_2$	CH ₃ CH ₂ OH	rt	NR^e
27	$Mg(ClO_4)_2$	CH ₃ COCH ₃	rt	NR^e
28	$Mg(ClO_4)_2$	CH ₃ CN	rt	ND^e

29	Mg(ClO ₄) ₂	DMF	rt	NDe
30	$Mg(ClO_4)_2$	CH ₂ ClCH ₂ Cl	rt	NR^e

^a Unless otherwise noted, all reactions were performed on **3** (0.1 mmol, 1.0 eq), **4** (1.0 mmol, 10.0 eq) and Lewis acids or Brønsted acids (0.15 mmol, 1.5 eq) in solvent (15 mL). ^b 0.01 mmol Lewis acids. ^c Yield of isolated product. ^d Determined by ¹H NMR (400 MHz) analysis (starting material was decomposed). ^e NR = no reaction (starting material was recovered); ND = not determined (starting material was decomposed).

3. Preparation of Substrates 3a-3k and Analytic Data

General procedure A: (the N of isatins were protected with Me/Bn)¹

$$R_{2} \stackrel{\text{||}}{\underset{\text{||}}{||}} O \qquad \frac{\text{NaH, Mel/BnCl}}{\text{DMF, 0°C}} \qquad R_{2} \stackrel{\text{||}}{\underset{\text{||}}{||}} O$$

Scheme S1. General procedure A

To a solution of isatin (1.0 mmol, 1.0 eq) in 15 mL DMF was added NaH (1.2 mmol, 1.2 eq) at 0 °C. After stirring for 15 min, MeI (1.2 mmol, 1.2 eq) or BnCl (1.2 mmol, 1.2 eq) was added to the mixture at dropwise and the stirring was continued for 1 h at 0 °C. The reaction was then quenched by water and extracted with EtOAc. The organic layer was separated and washed with water and brine respectively. Then the organic layer was dried over Na_2SO_4 , filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (Petroleum Ether/EtOAc = 2:1) to afford the products.

General procedure B:²

$$R_{2} = 0 + 0$$

$$R_{2} = 0 + 0$$

$$R_{1} = 0 + 0$$

$$R_{2} = 0$$

$$R_{2} = 0$$

$$R_{2} = 0$$

$$R_{2} = 0$$

$$R_{3} = 0$$

$$R_{1} = 0$$

Scheme S2. General procedure B

To a solution of 2-methylfuran (1.1 mmol, 1.1 eq) in anhydrous THF (20 mL) at -78 °C was added n-BuLi (1.0 mmol, 1.0 eq). After the resulting light yellow coloured solution stirring for 2 h, the corresponding isatin (1.0 mmol, 1.0 eq) in anhydrous THF (20 mL) was added to the mixture at dropwise and the stirring was continued for 1 h at the same temperature. The reaction was then quenched by saturated aqueous NH₄Cl (2 mL) and was allowed to warm to room temperature. Then the mixture was extracted with EtOAc, and the organic layer was separated and washed with water and brine respectively. Then the organic layer was dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (Petroleum Ether/EtOAc = 4:1) to afford the products.

3a. 3-hydroxy-1-methyl-3-(5-methylfuran-2-yl)indolin-2-one

Prepared according to general procedure A and B. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 4/1, v/v as eluent) to give the title compound **3a** (89%). And this is an unknown compound. ¹**H NMR** (CDCl₃, 400 MHz): δ 7.57 (d, J = 7.2 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 6.84 (d, J = 8.0 Hz, 1H), 6.15 (d, J = 2.8 Hz, 1H), 5.87(d, J = 3.2 Hz, 1H), 3.98 (s, 1H), 3.19 (s, 3H), 2.27 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 175.1, 154.0, 149.2, 143.4, 130.1, 128.3, 125.4, 123.2, 110.0, 108.6, 106.3, 73.3, 26.4, 13.7; **HRMS-ESI** (m/z): calcd for $C_{14}H_{13}NO_{3}[M + Na]^{+}$: 266.0788; found: 266.0784.

3b. 1-benzyl-3-hydroxy-3-(5-methylfuran-2-yl)indolin-2-one

Prepared according to general procedure A and B. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 4/1, v/v as eluent) to give the title compound **3b** (84%). And this is an unknown compound. ¹**H NMR** (CDCl₃, 400 MHz): δ 7.59 (d, J = 7.6 Hz, 1H), 7.32-7.21 (m, 6H), 7.09 (t, J = 7.6 Hz, 1H), 6.70 (d, J = 7.6 Hz, 1H), 6.21 (d, J = 2.8 Hz, 1H), 5.92 (d, J = 3.2 Hz, 1H), 5.03 (d, J = 16.0 Hz, 1H), 4.81 (d, J = 16.0 Hz, 1H), 3.58 (s, 1H), 2.30 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 175.3, 154.0, 149.3, 142.6, 135.2, 130.0, 128.8, 128.4, 127.7, 127.0, 125.4, 123.3, 109.8, 109.7, 106.4, 73.5, 43.8, 13.7; **HRMS-ESI** (m/z): calcd for C₂₀H₁₇NO₃[M + Na]⁺: 342.1101; found: 342.1097.

3c. 3-hydroxy-1,5-dimethyl-3-(5-methylfuran-2-yl)indolin-2-one

Prepared according to general procedure A and B. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 4/1, v/v as eluent) to give the title compound **3c** (74%). And this is an unknown compound. ¹**H NMR** (CDCl₃, 400 MHz): δ 7.38 (s, 1H), 7.16 (d, J = 8.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.15 (d, J = 3.2 Hz, 1H), 5.89 (d, J = 2.4 Hz, 1H), 3.37 (s, 1H), 3.20 (s, 3H), 2.36 (s, 3H), 2.30 (s, 3H); ¹³**C NMR (CDCl₃, 100 MHz):** δ 175.2, 153.8, 149.5, 141.1, 132.9, 130.3, 128.4, 126.0, 109.8, 108.3, 106.3, 73.5, 26.4, 21.0, 13.7; **HRMS-ESI** (m/z): calcd for C₁₅H₁₅NO₃[M + Na]⁺: 280.0944; found: 280.0939.

3d. 5-chloro-3-hydroxy-1-methyl-3-(5-methylfuran-2-yl)indolin-2-one

Prepared according to general procedure A and B. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 4/1, v/v as eluent) to give the title compound **3d** (70%). And this is an unknown compound. ¹**H NMR** (CDCl₃, 400 MHz): δ 7.56 (d, J = 2.0 Hz, 1H), 7.34 (dd, J = 8.4 Hz, J = 2.0 Hz, 1H), 6.79 (d, J = 8.4 Hz, 1H), 6.19 (d, J = 3.2 Hz, 1H), 5.91 (d, J = 2.4 Hz, 1H), 3.55 (s, 1H), 3.21 (s, 3H), 2.30 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 174.7, 154.3, 148.4, 142.0, 130.0, 129.7, 128.7, 125.9, 110.2, 109.6, 106.5, 73.2, 26.6, 13.8; **HRMS-ESI** (m/z): calcd for $C_{14}H_{12}CINO_{3}[M + Na]^{+}$: 300.0398; found: 300.0394.

3e. 5-bromo-3-hydroxy-1-methyl-3-(5-methylfuran-2-yl)indolin-2-one

Prepared according to general procedure A and B. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 4/1, v/v as eluent) to give the title compound **3e** (42%). And this is an unknown compound. ¹**H NMR** (CDCl₃, 400 MHz): δ 7.69 (d, J = 2.0 Hz, 1H), 7.49 (dd, J = 8.4 Hz, J = 2.0 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 6.19 (d, J = 3.2 Hz, 1H), 5.91 (d, J = 2.4 Hz, 1H), 3.32 (s, 1H), 3.21 (s, 3H), 2.30 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 174.5, 154.4, 148.5, 142.6, 133.0, 130.1, 128.7, 115.9, 110.3, 110.1, 106.5, 73.2, 26.6, 13.7; **HRMS-ESI** (m/z): calcd for $C_{14}H_{12}BrNO_{3}[M + Na]^{+}$: 343.9893; found: 343.9888.

3f. 6-chloro-3-hydroxy-1-methyl-3-(5-methylfuran-2-yl)indolin-2-one

Prepared according to general procedure A and B. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 4/1, v/v as eluent) to give the title compound **3f** (72%). And this is an unknown compound. ¹**H NMR** (CDCl₃, 400 MHz): δ 7.50 (d, J = 8.0 Hz, 1H), 7.12 (dd, J = 8.0 Hz, J = 2.0 Hz, 1H), 6.87 (d, J = 1.6 Hz, 1H), 6.15 (d, J = 2.8 Hz, 1H), 5.90 (d, J = 2.4 Hz, 1H), 3.47 (s, 1H), 3.21 (s, 3H), 2.29 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 175.0, 154.3, 148.6, 144.7, 136.0, 126.5, 126.4, 123.1, 110.1, 109.4, 106.5, 72.9, 26.6, 13.7; **HRMS-ESI** (m/z): calcd for $C_{14}H_{12}CINO_3[M + Na]^+$: 300.0398; found: 300.0394.

3g. 6-bromo-3-hydroxy-1-methyl-3-(5-methylfuran-2-yl)indolin-2-one

Prepared according to general procedure A and B. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 4/1, v/v as eluent) to give the title compound **3g** (62%). And this is an unknown compound. ¹**H NMR** (CDCl₃, 400 MHz): δ 7.69 (d, J = 1.6 Hz, 1H), 7.49 (dd, J = 8.4 Hz, J = 2.0 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 6.19 (d, J = 3.2 Hz, 1H), 5.91 (d, J = 2.0 Hz, 1H), 3.41 (s, 1H), 3.21 (s, 3H), 2.30 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 174.5, 154.4, 148.4, 142.5, 132.9, 130.1, 128.6, 115.9, 110.3, 110.1, 106.5, 73.2, 26.6, 13.8; **HRMS-ESI** (m/z): calcd for $C_{14}H_{12}BrNO_{3}[M + H]^{+}$: 343.9893; found: 343.9891.

3h. 7-fluoro-3-hydroxy-1-methyl-3-(5-methylfuran-2-yl)indolin-2-one

Prepared according to general procedure A and B. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 4/1, v/v as eluent) to give the title compound **3h** (85%). And this is an unknown compound. ¹**H NMR** (CDCl₃, 400 MHz): δ 7.37 (dd, J = 6.8 Hz, J = 1.6 Hz, 1H), 7.08-7.04 (m, 2H), 6.16 (d, J = 3.2 Hz, 1H), 5.88 (d, J = 3.2 Hz, 1H), 3.96 (s, 1H), 3.41 (d, J = 2.8 Hz, 3H), 2.27 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 174.9, 154.1, 148.9, 148.8, 146.5, 131.1, 130.0, 129.9, 123.9, 123.8, 121.3, 121.2, 118.1, 117.9, 110.1, 106.4, 73.3, 73.3, 29.0, 28.9, 13.6; HRMS-ESI (m/z): calcd for $C_{14}H_{12}FNO_{3}[M+Na]^{+}$: 284.0693; found: 284.0690.

3i. 7-bromo-3-hydroxy-1-methyl-3-(5-methylfuran-2-yl)indolin-2-one

Prepared according to general procedure A and B. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 4/1, v/v as eluent) to give the title compound **3i** (48%). And this is an unknown compound. ¹**H NMR** (CDCl₃, 400 MHz): δ 7.51 (d, J = 7.2 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 6.98 (t, J = 8.0 Hz, 1H), 6.14 (d, J = 2.8 Hz, 1H), 5.89 (d, J = 2.0 Hz, 1H), 3.60 (s, 4H), 2.28 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 175.6, 154.2, 148.7, 140.8, 135.7, 131.3, 124.6, 124.4, 110.2, 106.4, 102.7, 72.7, 30.1, 13.7; **HRMS-ESI** (m/z): calcd for C₁₄H₁₂BrNO₃[M + Na]⁺: 343.9893; found: 343.9891.

3j. 7-bromo-3-hydroxy-1,5-dimethyl-3-(5-methylfuran-2-yl)indolin-2-one

Prepared according to general procedure A and B. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 4/1, v/v as eluent) to give the title compound **3j** (74%). And this is an unknown compound. ¹H NMR (CDCl₃, 400 MHz): δ 7.52 (d, J = 1.6 Hz, 1H), 7.23 (d, J = 1.2 Hz, 1H), 6.16 (d, J = 3.2 Hz, 1H), 5.89 (d, J = 2.4 Hz, 1H), 3.62 (s, 1H), 3.46 (s, 3H), 2.53 (s, 3H), 2.29 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 175.4, 154.2, 148.8, 140.2, 136.1, 130.8, 126.5, 122.2, 115.6, 110.1, 106.4, 72.7, 29.8, 18.7, 13.7; HRMS-ESI (m/z): calcd for C₁₅H₁₄BrNO₃[M + Na]⁺: 358.0049; found: 358.0047.

3k. 3-hydroxy-1,5,7-trimethyl-3-(5-methylfuran-2-yl)indolin-2-one

Prepared according to general procedure A and B. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 4/1, v/v as eluent) to give the title compound **3k** (67%). And this is an unknown compound. ¹**H NMR** (CDCl₃, 400 MHz): δ 7.21 (s, 1H), 6.90 (s, 1H), 6.11 (d, J = 3.2 Hz, 1H), 5.88 (dd, J = 3.2 Hz, J = 0.8 Hz, 1H), 3.47 (s, 3H), 3.28 (s, 1H), 2.52 (s, 3H), 2.30 (s, 3H), 2.29 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 175.8, 153.9, 149.7, 138.8, 134.3, 132.8, 128.9, 124.0, 119.9, 109.8, 106.3, 72.9, 29.8, 20.7, 18.8, 13.7; **HRMS-ESI** (m/z): calcd for C₁₆H₁₇NO₃[M + Na]⁺: 294.1101; found: 294.1100.

4. Synthesis of Products 5a-5k and Analytic Data

General procedure C: (The [4+3] cycloaddition reaction)

$$R_2$$
 R_2 R_1 R_2 R_2 R_3 R_1 R_1 R_2 R_2 R_3 R_4 R_1

To a solution of **3** (0.1 mmol, 1.0 eq) and Mg(ClO₄)₂ (0.15 mmol, 1.5 eq) in anhydrous DCM (15 mL), **4** (1.0 mmol, 10.0 eq) in anhydrous DCM (1.0 mL) was added dropwise. The mixture was stirred at room temperature or at refluxing temperature. The reaction progress was monitored by TLC (Petroleum Ether/EtOAc = 16:1) until the reaction complete, then evaporated to afford the crude product. Purification via a column chromatography (Petroleum Ether/EtOAc = 16:1) provided the products.

5a. 1',2-dimethyl-4,7-dihydrospiro[4,7-methanocyclohepta[b]furan-8,3'-indolin]-2'-one

Prepared according to general procedure C. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 16/1, v/v as eluent) to give the title compound **5a** (58%); **Mp:** 165-167 °C; ¹**H NMR (CDCl₃, 400 MHz):** δ 7.31 (t, J = 7.8 Hz, 1H), 6.95 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 8.0 Hz, 2H), 6.75 (dd, J = 5.2 Hz, J = 2.8 Hz, 1H), 5.90 (s, 1H), 5.77 (dd, J = 5.2 Hz, J = 2.8 Hz, 1H), 3.40 (t, J = 3.6 Hz, 1H), 3.28 (s, 3H), 2.99 (d, J = 10.0 Hz, 1H), 2.95 (t, J = 3.6 Hz, 1H), 2.09 (s, 3H), 2.07-2.04 (m, 1H); ¹³**C NMR (CDCl₃, 100 MHz):** δ 177.8, 150.0, 146.4, 144.2, 143.4, 129.8, 128.7, 128.4, 127.7, 125.1, 121.9, 108.3, 105.0, 52.9, 49.2, 41.4, 37.9, 26.5, 13.6; **IR** (neat): 3400, 2954, 1710, 1610, 1492, 1345, 1125, 748 cm⁻¹; **HRMS-ESI** (m/z): calcd for C₁₉H₁₇NO₂[M + Na]⁺: 314.1151; found: 314.1148.

5b. 1'-benzyl-2-methyl-4,7-dihydrospiro[4,7-methanocyclohepta[b]furan-8,3'-indolin]-2'-one

Prepared according to general procedure C. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 16/1, v/v as eluent) to give the title compound **5b** (74%). ¹**H NMR (CDCl₃, 400 MHz):** δ 7.34-7.32 (m, 4H), 7.28-7.25 (m, 2H), 7.18 -7.14 (m, 1H), 6.91 (d, J = 3.6 Hz, 2H), 6.77-6.75 (m, 2H), 5.92 (s, 1H), 5.79 (dd, J = 5.6 Hz, J = 3.2 Hz, 1H), 5.09 (d, J = 16.0 Hz, 1H), 4.87 (d, J = 15.6 Hz, 1H), 3.42 (t, J = 3.6 Hz, 1H), 3.07-3.02 (m, 2H), 2.11 (s, 3H); ¹³**C NMR (CDCl₃, 100 MHz):** δ 177.9, 150.1, 146.5, 144.3, 142.5, 136.0, 129.8, 128.8, 128.7, 128.3, 127.7, 127.5, 127.1, 125.3, 122.0, 109.3, 105.0, 52.9, 49.4, 43.8, 41.6, 37.9, 13.6; **IR** (neat): 3399, 3055, 2936, 1708, 1611, 1487, 1357, 1265, 738, 701 cm⁻¹; **HRMS-ESI** (m/z): calcd for C₂₅H₂₁NO₂[M + Na]⁺: 390.1465; found: 390.1459.

5c. 1',2,5'-trimethyl-4,7-dihydrospiro[4,7-methanocyclohepta[b]furan-8,3'-indolin]-2'-one

Prepared according to general procedure C. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 16/1, v/v as eluent) to give the title compound **5c** (63%). **¹H NMR (CDCl₃, 400 MHz):** δ 7.09 (d, J = 8.0 Hz, 1H), 6.80-6.75 (m, 2H), 6.72 (s, 1H), 5.91 (d, J = 0.8 Hz, 1H), 5.78 (dd, J = 5.6 Hz, J = 3.2 Hz, 1H), 3.39 (t, J = 3.6 Hz, 1H), 3.25 (s, 3H), 3.00 (d, J = 10.0 Hz, 1H), 2.93 (t, J = 4.4 Hz, 1H), 2.27 (s, 3H), 2.10 (s, 3H), 2.08-2.03 (m, 1H); ¹³C **NMR** (**CDCl₃, 100 MHz):** δ 177.7, 150.0, 146.4, 144.4, 141.1, 131.4, 130.0, 128.7, 127.6, 125.9, 108.0, 105.0, 52.9, 49.3, 41.4,

37.9, 26.6, 21.1, 13.6; **IR** (neat): 3392, 2925, 1707, 1618, 1500, 1265, 1090, 737, 703 cm⁻¹; **HRMS-ESI** (m/z): calcd for $C_{20}H_{19}NO_2[M + Na]^+$: 328.1308; found: 328.1304.

5d. 5'-chloro-1',2-dimethyl-4,7-dihydrospiro[4,7-methanocyclohepta[b]furan-8,3'-indolin]-2'-one

Prepared according to general procedure C. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 16/1, v/v as eluent) to give the title compound **5d** (39%). ¹**H NMR (CDCl₃, 400 MHz):** δ 7.29-7.27 (m, 1H), 6.87 (d, J = 2.0 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 6.79-6.77 (m, 1H), 5.92 (d, J = 0.8 Hz, 1H), 5.77 (dd, J = 5.2 Hz, J = 3.2 Hz, 1H), 3.41 (t, J = 3.6 Hz, 1H), 3.27 (s, 3H), 2.98-2.93 (m, 2H), 2.11 (s, 3H), 2.11-2.05 (m, 1H); ¹³**C NMR (CDCl₃, 100 MHz):** δ 177.3, 150.3, 147.0, 143.5, 142.0, 130.5, 129.4, 128.0, 125.4, 125.2, 109.7, 109.2, 105.1, 53.0, 49.2, 41.5, 37.9, 25.9, 13.6; **IR** (neat): 3404, 2939, 1733, 1611, 1490, 1238, 1114, 1069 cm⁻¹; **HRMS-ESI** (m/z): calcd for $C_{19}H_{16}CINO_2[M+H]^+$: 326.0942; found: 326.0938.

5e. 5'-bromo-1',2-dimethyl-4,7-dihydrospiro[4,7-methanocyclohepta[b]furan-8,3'-indolin]-2'-one

Prepared according to general procedure C. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 16/1, v/v as eluent) to give the title compound **5e** (50%). ¹**H NMR (CDCl₃, 400 MHz):** δ 7.43 (dd, J = 8.4 Hz, J = 2.0 Hz, 1H), 7.00 (d, J = 2.0 Hz, 1H), 6.78 (t, J = 4.4 Hz, 2H), 5.92 (d, J = 0.8 Hz, 1H), 5.77 (dd, J = 5.6 Hz, J = 3.2 Hz, 1H), 3.41 (t, J = 4.0 Hz, 1H), 3.26 (s, 3H), 2.97-2.93 (m, 2H), 2.12 (s, 3H), 2.10-2.05 (m, 1H); ¹³**C NMR (CDCl₃, 100 MHz):** δ 177.2, 150.3, 147.1, 143.4, 142.5, 131.2, 130.6, 129.4, 128.0, 128.0, 114.7, 109.7, 105.1, 52.9, 49.1, 41.4, 37.8, 26.7, 13.6; **IR** (neat): 2928, 1717, 1606, 1487, 1339, 1096, 731 cm⁻¹; **HRMS-ESI** (m/z): calcd for C₁₉H₁₆BrNO₂[M + Na]⁺: 392.0257; found: 392.0252.

5f. 6'-chloro-1',2-dimethyl-4,7-dihydrospiro[4,7-methanocyclohepta[b]furan-8,3'-indolin]-2'-one

Prepared according to general procedure C. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 16/1, v/v as eluent) to give the title compound **5f** (45%). ¹H **NMR** (**CDCl**₃, **400 MHz**): δ 6.93-6.90 (m, 2H), 6.80 (d, J = 8.0 Hz, 1H), 6.76-6.74 (m, 1H), 5.90 (s, 1H), 5.72 (dd, J = 5.6 Hz, J = 3.2 Hz, 1H), 3.39 (t, J = 3.2 Hz, 1H),

3.26 (s, 3H), 2.98-2.91 (m, 2H), 2.10 (s, 3H), 2.07-2.03 (m, 1H); 13 C NMR (CDCl₃, 100 MHz): δ 177.7, 150.2, 146.9, 144.6, 143.6, 134.2, 129.5, 127.9, 126.9, 125.9, 121.8, 109.1, 105.0, 52.5, 49.1, 41.4, 37.8, 26.7, 13.6; IR (neat): 3417, 2938, 1719, 1607, 1493, 1364, 1076, 732 cm⁻¹; HRMS-ESI (m/z): calcd for $C_{19}H_{16}CINO_2[M + Na]^+$: 348.0762; found: 348.0758.

5g. 6'-bromo-1',2-dimethyl-4,7-dihydrospiro[4,7-methanocyclohepta[b]furan-8,3'-indolin]-2'-one

Prepared according to general procedure C. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 16/1, v/v as eluent) to give the title compound **5g** (56%). ¹**H NMR (CDCl₃, 400 MHz):** δ 7.08 (dd, J = 8.0 Hz, J = 2.0 Hz, 1H), 7.04 (d, J = 1.6 Hz, 1H), 6.75 (dd, J = 5.2 Hz, J = 2.4 Hz, 2H), 5.89 (d, J = 0.8 Hz, 1H), 5.72 (dd, J = 5.6 Hz, J = 3.2 Hz, 1H), 3.39 (t, J = 3.6 Hz, 1H), 3.25 (s, 3H), 2.96 (d, J = 10.0 Hz, 1H), 2.92 (dd, J = 4.4 Hz, J = 3.2 Hz, 1H), 2.09 (s 3H), 2.09-2.03 (m, 1H); ¹³**C NMR (CDCl₃, 100 MHz):** δ 177.5, 150.2, 146.9, 144.8, 143.6, 129.4, 127.9, 127.6, 126.3, 124.7, 122.0, 111.8, 105.0, 52.6, 49.1, 41.4, 37.9, 26.7, 13.5; **IR** (neat): 2929, 1719, 1602, 1491, 1363, 1092, 731 cm⁻¹; **HRMS-ESI** (m/z): calcd for C₁₉H₁₆BrNO₂[M + Na]⁺: 392.0257; found: 392.0253.

5h. 7'-fluoro-1',2-dimethyl-4,7-dihydrospiro[4,7-methanocyclohepta[b]furan-8,3'-indolin]-2'-one

Prepared according to general procedure C. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 16/1, v/v as eluent) to give the title compound **5h** (68%). ¹**H NMR (CDCl₃, 400 MHz):** δ 7.04-6.98 (m, 1H), 6.88-6.83 (m, 1H), 6.75-6.73 (m, 1H), 6.68-6.66 (m, 1H), 5.90 (d, J = 0.8 Hz, 1H), 5.72 (dd, J = 5.2 Hz, J = 2.8 Hz, 1H), 3.49 (d, J = 2.8 Hz, 3H), 3.39 (t, J = 3.6 Hz, 1H), 3.00-2.94 (m, 2H), 2.10 (d, J = 0.8 Hz, 3H), 2.08-2.03 (m, 1H); ¹³**C NMR (CDCl₃, 100 MHz):** δ 177.4, 150.2, 149.1, 146.6, 146.6, 143.7, 131.4, 131.4, 130.0, 129.9, 129.5, 127.7, 122.3, 122.3, 121.0, 120.9, 116.4, 116.2, 105.0, 53.0, 53.0, 49.3, 41.3, 37.8, 29.1, 29.0, 13.6; **IR** (neat): 3409, 2947, 1715, 1629, 1486, 1366, 1238, 1117, 909, 733 cm⁻¹; **HRMS-ESI** (m/z): calcd for C₁₉H₁₆FNO₂[M + Na]⁺: 332.1057; found: 332.1054.

5i. 7'-bromo-1',2-dimethyl-4,7-dihydrospiro[4,7-methanocyclohepta[b]furan-8,3'-indolin]-2'-one

Prepared according to general procedure C. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 16/1, v/v as eluent) to give the title compound **5i** (35%). ¹**H NMR (CDCl₃, 400 MHz):** δ 7.39 (t, J = 4.4 Hz, 1H), 6.78-6.77 (m, 2H), 6.75-6.72 (m, 1H), 5.90 (d, J = 0.8 Hz, 1H), 5.69 (dd, J = 5.2 Hz, J = 2.8 Hz, 1H), 3.66 (s, 3H), 3.39 (t, J = 3.6 Hz, 1H), 2.99-2.92 (m, 2H), 2.11 (d, J = 0.8 Hz, 3H), 2.09-2.04 (m, 1H); ¹³C **NMR (CDCl₃, 100 MHz):** δ 178.2, 150.3, 146.6, 143.7, 140.7, 134.1, 131.6, 129.5, 127.8, 124.1, 123.0, 105.1, 102.5, 52.7, 49.6, 41.5, 37.8, 29.7, 13.6; **IR** (neat): 3366, 2922, 1718, 1601, 1459, 1259, 1104 cm⁻¹; **HRMS-ESI** (m/z): calcd for C₁₉H₁₆BrNO₂[M + Na]⁺: 392.0257; found: 392.0253.

5j. 7'-bromo-1',2,5'-trimethyl-4,7-dihydrospiro[4,7-methanocyclohepta[b]furan-8,3'-indolin]-2'-one

Prepared according to general procedure C. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 16/1, v/v as eluent) to give the title compound **5j** (52%). ¹**H NMR (CDCl₃, 400 MHz):** δ 7.17 (d, J = 1.6 Hz, 1H), 6.80 (d, J = 2.0 Hz, 1H), 6.75 (dd, J = 5.6 Hz, J = 2.8 Hz, 1H), 5.90 (d, J = 0.8 Hz, 1H), 5.72 (dd, J = 5.6 Hz, J = 2.8 Hz, 1H), 3.53 (s, 3H), 3.39 (t, J = 3.6 Hz, 1H), 2.97 (d, J = 10.4 Hz, 1H), 2.90 (dd, J = 4.4 Hz, J = 3.2 Hz, 1H), 2.58 (s, 3H), 2.12 (d, J = 0.4 Hz, 3H), 2.08-2.03 (m, 1H); ¹³C **NMR (CDCl₃, 100 MHz):** δ 178.0, 150.3, 146.8, 143.8, 140.3, 134.6, 131.1, 129.4, 127.8, 125.9, 121.7, 114.4, 105.1, 52.5, 49.6, 41.5, 37.9, 29.9, 18.9, 13.6; **IR** (neat): 2931, 1711, 1600, 1461, 1331, 1115, 731 cm⁻¹; **HRMS-ESI** (m/z): calcd for C₂₀H₁₈BrNO₂[M + Na]⁺: 406.0413; found: 406.0410.

5k. 1',2,5',7'-tetramethyl-4,7-dihydrospiro[4,7-methanocyclohepta[b]furan-8,3'-indolin]-2'-one

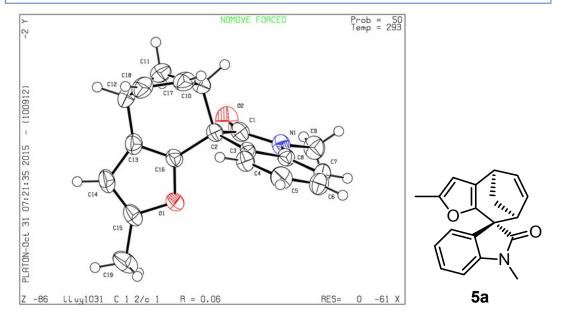
Prepared according to general procedure C. The crude product was purified via flash column chromatography (silica gel, PE/EtOAc = 16:1, v/v as eluent) to give the title compound **5k** (69%). ¹**H NMR (CDCl₃, 400 MHz):** δ 6.83 (s, 1H), 6.73 (dd, J = 5.2 Hz, J = 2.8 Hz, 1H), 6.52 (s, 1H), 5.90 (s, 1H), 5.74 (dd, J = 5.6 Hz, J = 3.2 Hz, 1H), 3.53 (s, 3H), 3.38 (t, J = 3.6 Hz, 1H), 3.01 (d, J = 10.0 Hz, 1H), 2.90 (t, J = 4.0 Hz, 1H), 2.57 (s, 3H), 2.21 (s, 3H), 2.11 (s, 3H), 2.06-2.01 (m, 1H); ¹³**C NMR (CDCl₃, 100 MHz):** δ 178.5, 149.9, 146.1, 144.7, 138.7, 132.7, 131.2, 130.0, 129.2, 127.4, 123.8, 119.5, 105.0, 52.5, 49.6, 41.5, 37.9, 29.9, 20.7, 19.0, 13.7; **IR** (neat): 2930, 1706, 1601, 1475, 1344, 1104, 835, 732 cm⁻¹; **HRMS-ESI** (m/z): calcd for C₂₁H₂₁NO₂[M + Na]⁺: 342.1465; found: 342.1463.

5. Additional Experiments

a) The scope of allylic alcohols:

We have tried many types of allylic alcohols: such as ethenyl-, alkynyl-, phenyl-, thienyl-, furyl-, benzothiophenyl-group, etc. The unsubstituted furyl-oxindole derivatives could not exist stably for the C2 position of furan is the most reactive site towards electrophiles. And the others could not react with cyclopentadiene under the optimal reaction conditions to achieve the expected spirocycloheptane oxindole skeletons.

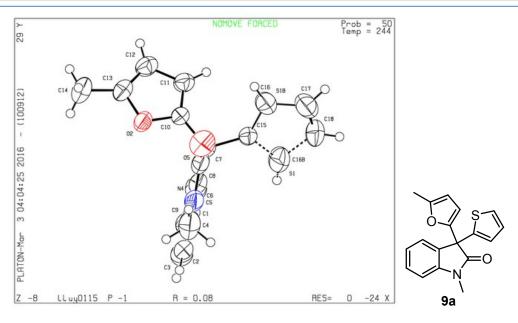
b) A control reaction of 2a with thiophenes:


In the experimental results, when we used thiophenes as dienes, only a Friedel–Crafts intermolecular alkylation reaction occurred, giving an ordinary electrophilic adducts 9a (determined by the single X-ray crystallographic analysis). We expected that these results might support for a two-step pathway mechanism of the intermolecular [4 + 3] cycloaddition reactions.

6. Relative Configuration and X-Ray Analysis Data

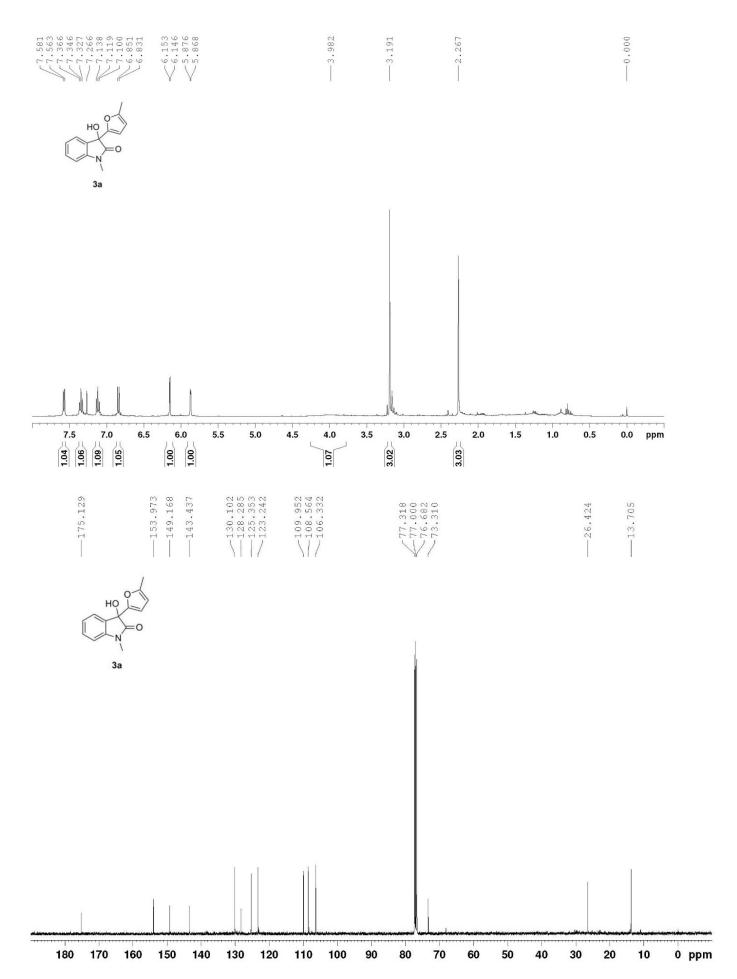
$5a.\ 1', 2-dimethyl-4, 7-dihydrospiro[4, 7-methanocyclohepta[b] furan-8, 3'-indolin]-2'-one$

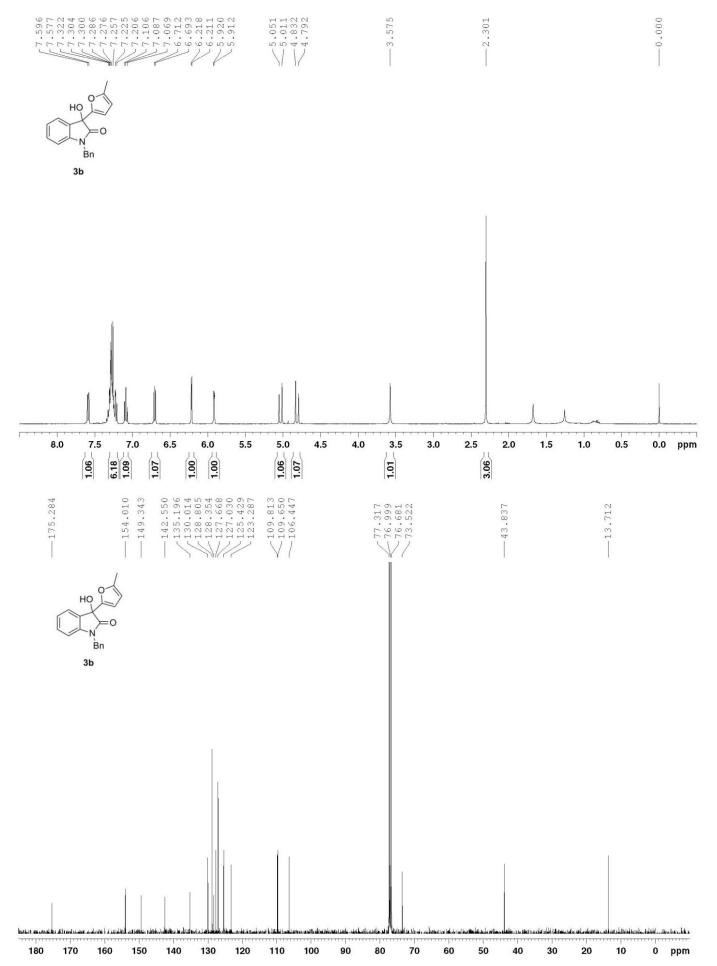
(The CCDC deposition number: CCDC(5a): 1434481)

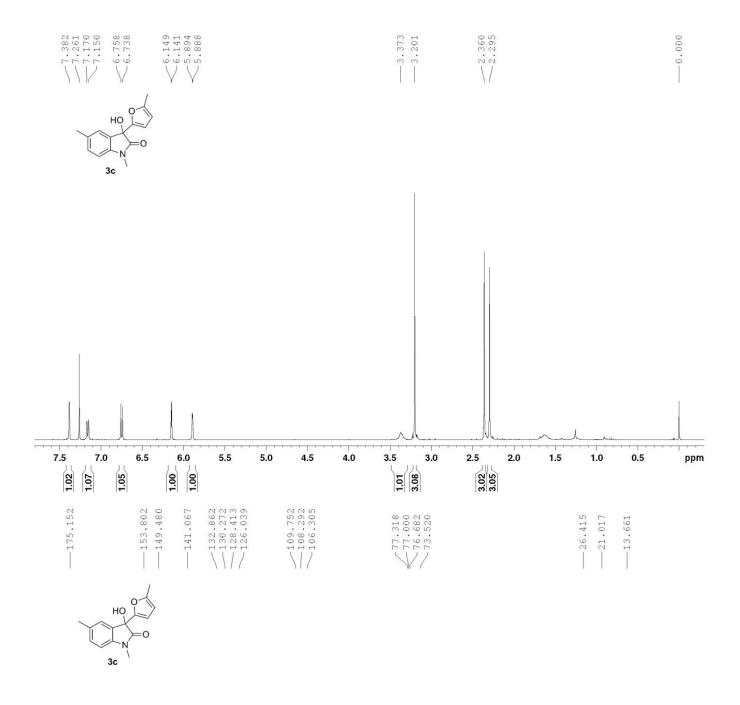

Bond precision	on: $C-C = 0$.	0024 A	Wavelength=1.54180
Cell:	a=16.9806(5)	=8.6168(2)	c=20.4475(6)
	alpha=90	peta=98.426(3)	gamma=90
Temperature:	293 K		
	Calculate	i	Reported
Volume	2959.55(1	1)	2959.57(14)
Space group	C 2/c		C 1 2/c 1
Hall group	-C 2yc		-C 2yc
Moiety formul	a C19 H17 N	02	C19 H17 N O2
Sum formula	C19 H17 N	02	C19 H17 N O2
Mr	291.34		291.34
Dx,g cm-3	1.308		1.308
Z	8		8
Mu (mm-1)	0.676		0.676
F000	1232.0		1232.0
F000'	1235.61		
h, k, lmax	20, 10, 24		20, 10, 24
Nref	2817		2808
Tmin, Tmax	0.907,0.9	17	0.693,1.000
Tmin'	0.795		
Correction me AbsCorr = MUL	thod= # Reported T TI-SCAN	Limits: Tmin=0	.693 Tmax=1.000
Data complete	ness= 0.997	Theta(max)=	70.050
R(reflections	:)= 0.0639(2526)	wR2(ref	lections)= 0.1780(2808)
S = 1.070	Npar=	201	

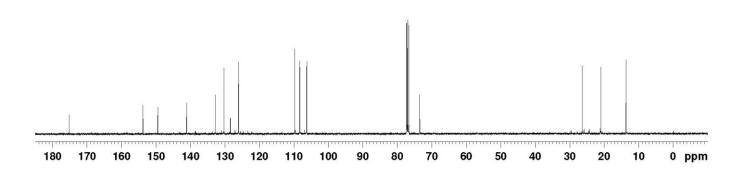
9a. 1-methyl-3-(5-methylfuran-2-yl)-3-(thiophen-2-yl)indolin-2-one

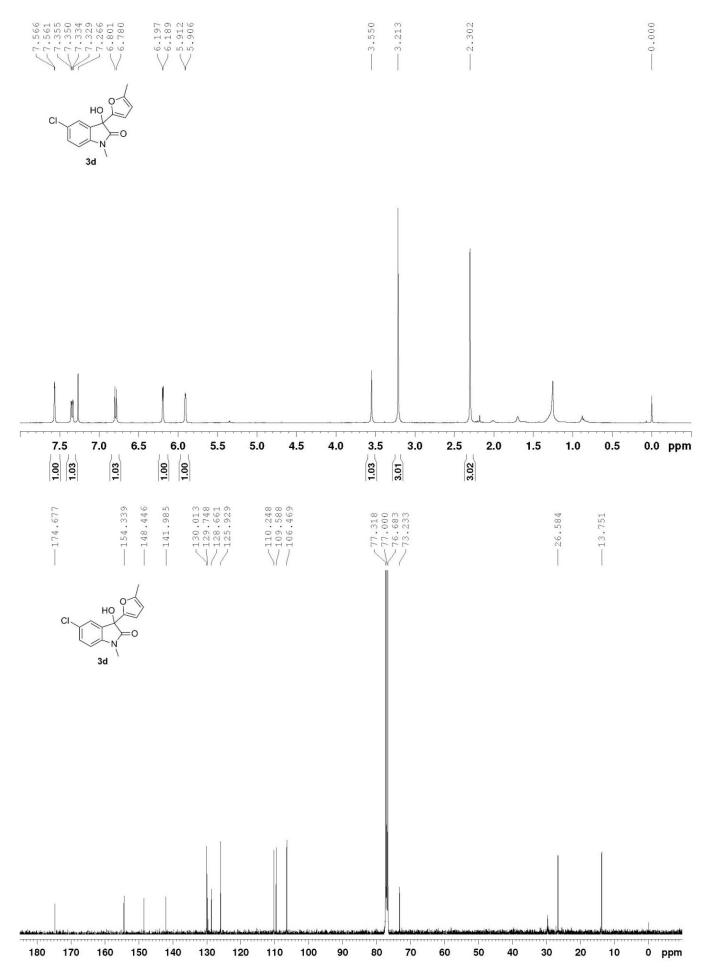
(The CCDC deposition number: CCDC(9a): 1456972)

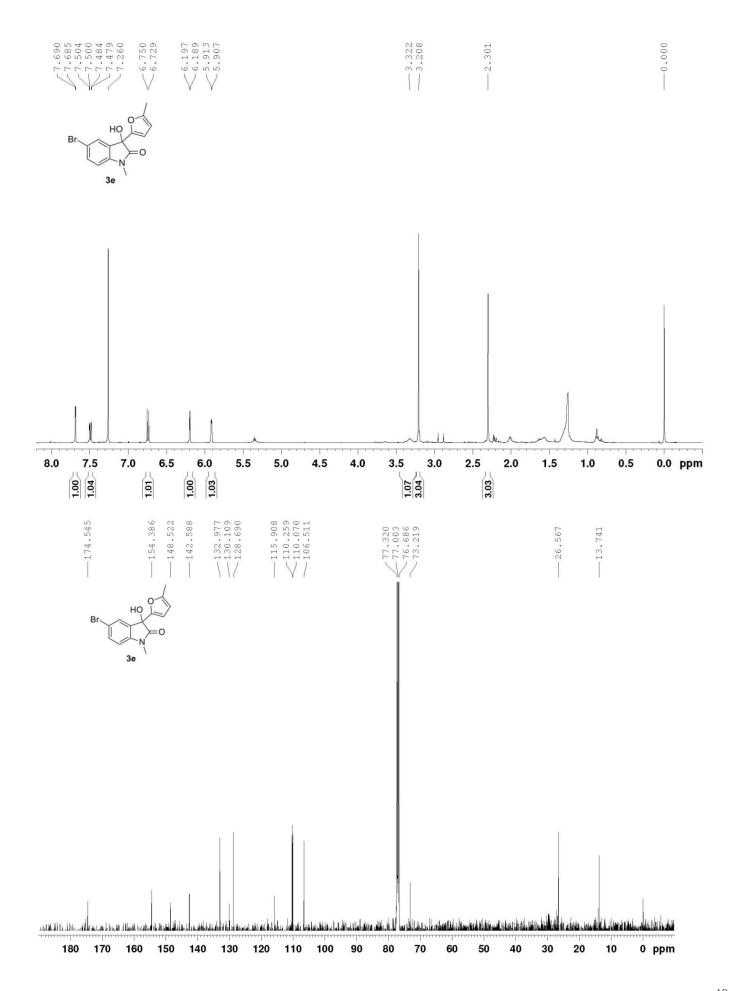

Bond precisi	on: C-C	= 0.0070 A	Wavelength=0.71073	
		b=8.6821(17)		
	alpha=74.13(2)	beta=82.60(2)	gamma=68.31(2)	
Temperature:			5 - C 1 - C	
	Calcul	ated	Reported	
Volume	774.1(3)	774.1(3)	
Space group	P -1		P -1	
Hall group -P 1			-P 1	
Moiety formu	la C18 H1	5 N 02 S	C18 H15 N O2 S	
Sum formula	C18 H1	5 N 02 S	C18 H15 N O2 S	
Mr	309.37		309.37	
Dx,g cm-3	1.327		1.327	
Z	2		2	
Mu (mm-1)	0.215		0.215	
F000	324.0		324.0	
F000'	324.38			
h, k, lmax	10, 10,	14	10, 10, 14	
Nref	3054		3046	
Tmin, Tmax	0.920,	0.934	0.627, 1.000	
Tmin'	0.920			
Correction m AbsCorr = MU	BCHOOL 1일 10.4	ed T Limits: Tmin=0	0.627 Tmax=1.000	
Data complet	eness= 0.997	Theta(max):	= 26.021	
R(reflection	s)= 0.0783(159	4) wR2(ref	flections)= 0.2516(3046)	
S = 1.040		ar= 201		

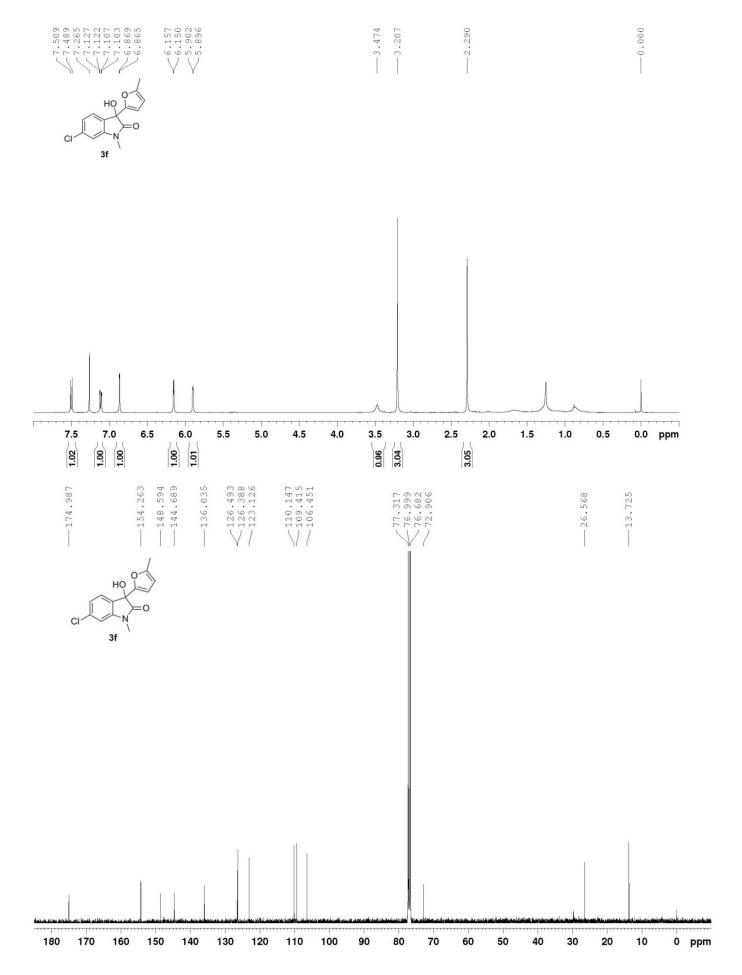


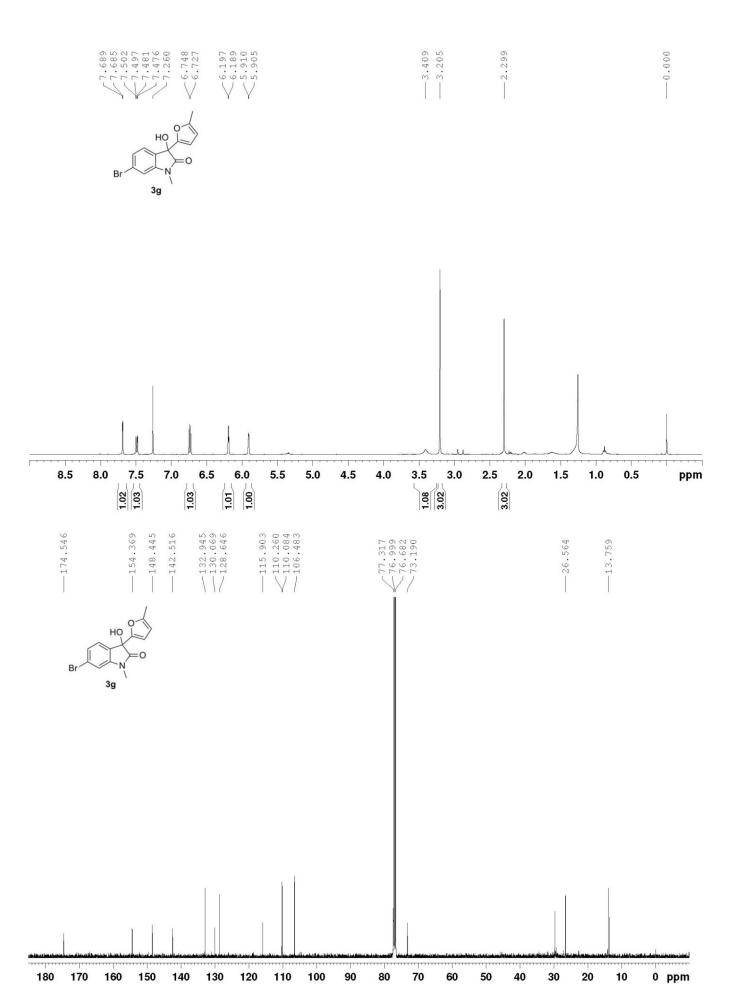

7. References.

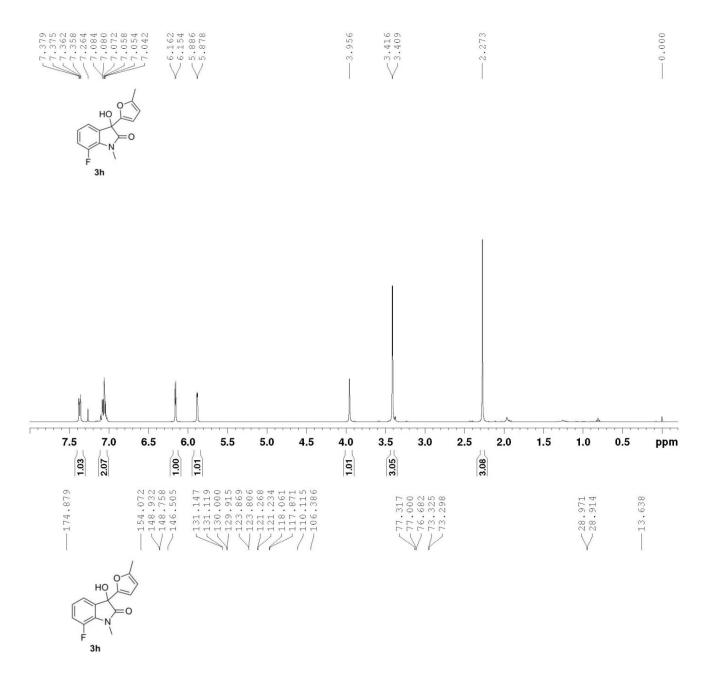

1. B. M. Trost, K. Hirano, *Angew. Chem. Int. Ed.* 2012, **51**, 6480-6483; *Angew. Chem.* 2012, **124**, 6586.

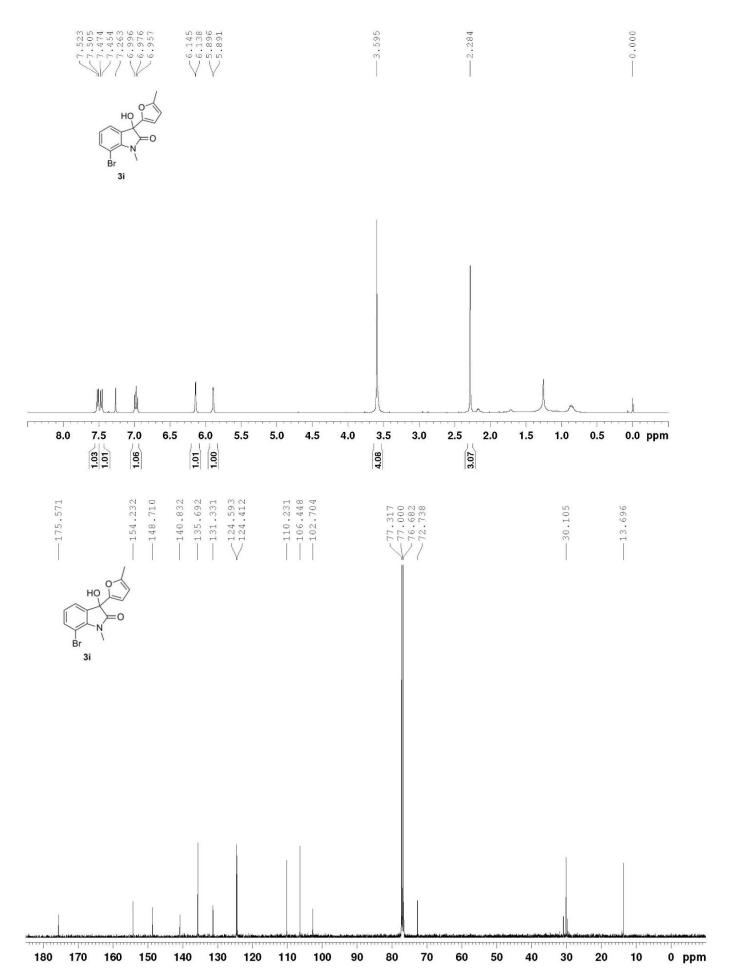

2. (a) S. Chowdhury, M. Chafeev, S. Liu, J. Sun, V. Raina, R. Chui, W. Young, R. Kwan, J. Fu and J. A. Cadieux, *Bioorg. Med. Chem. Lett.*, 2011, **21**, 3676; (b) T. Teruhisa, U. Takashi, *PCT Int. Appl.* W00010975.

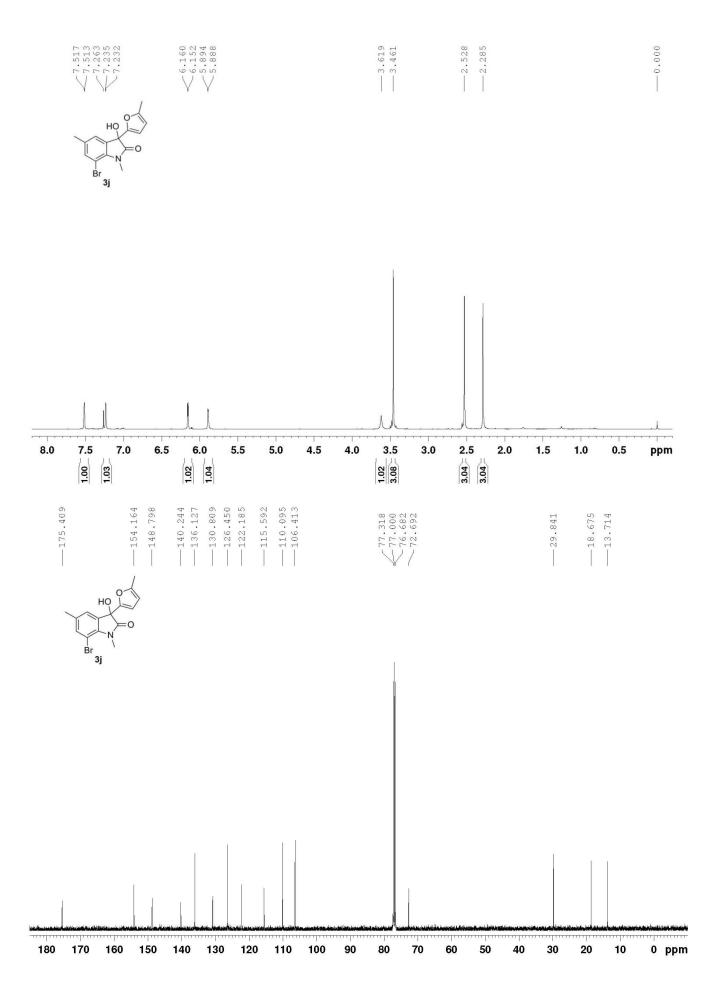


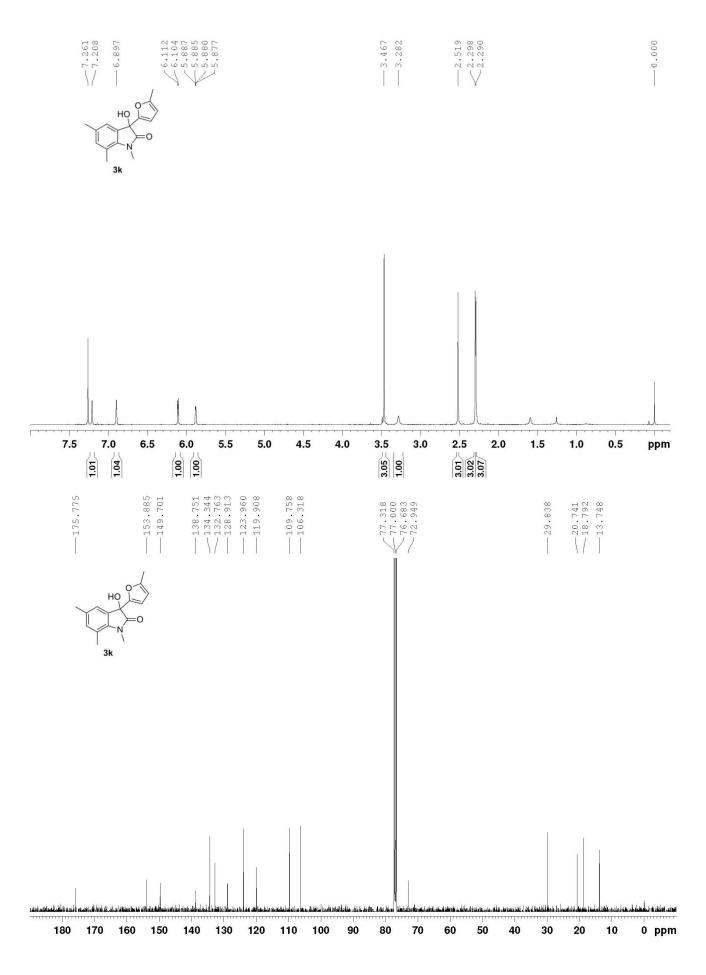


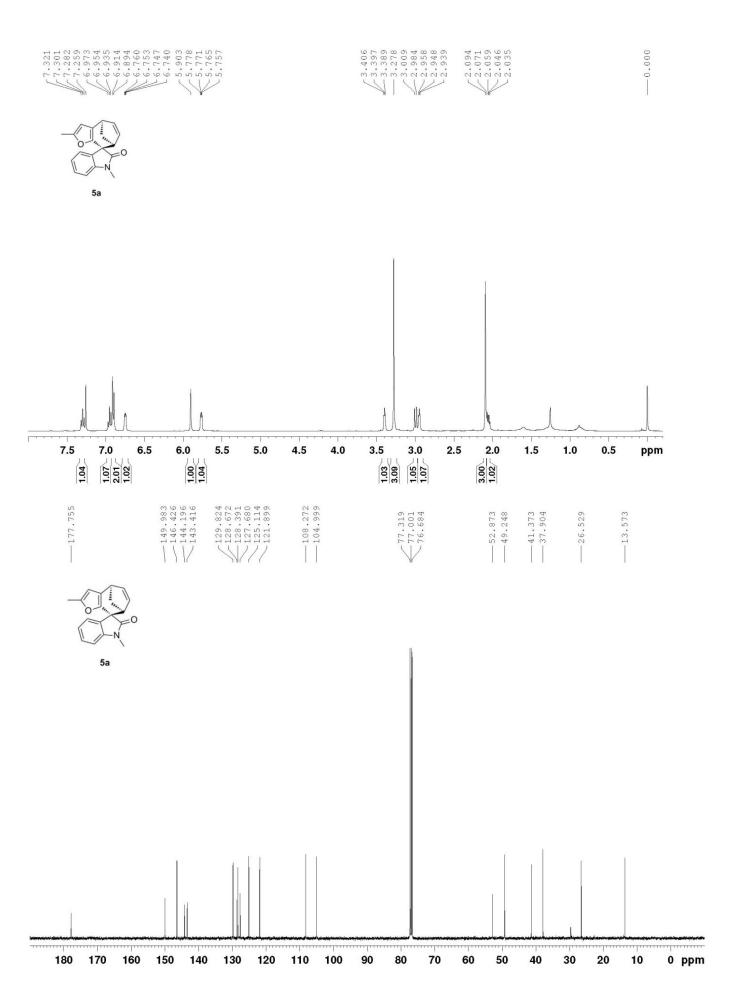


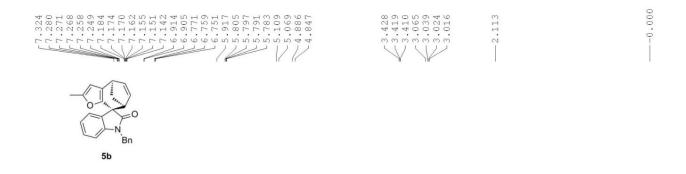


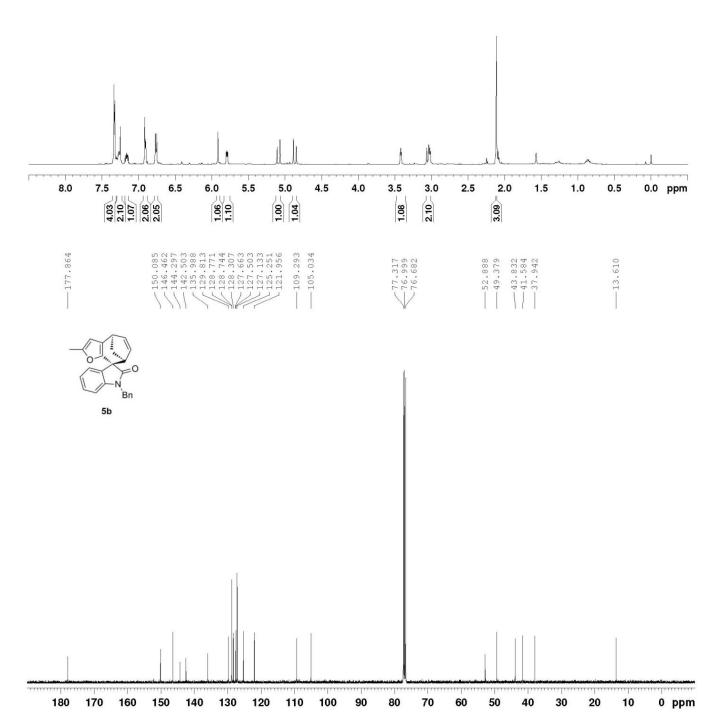


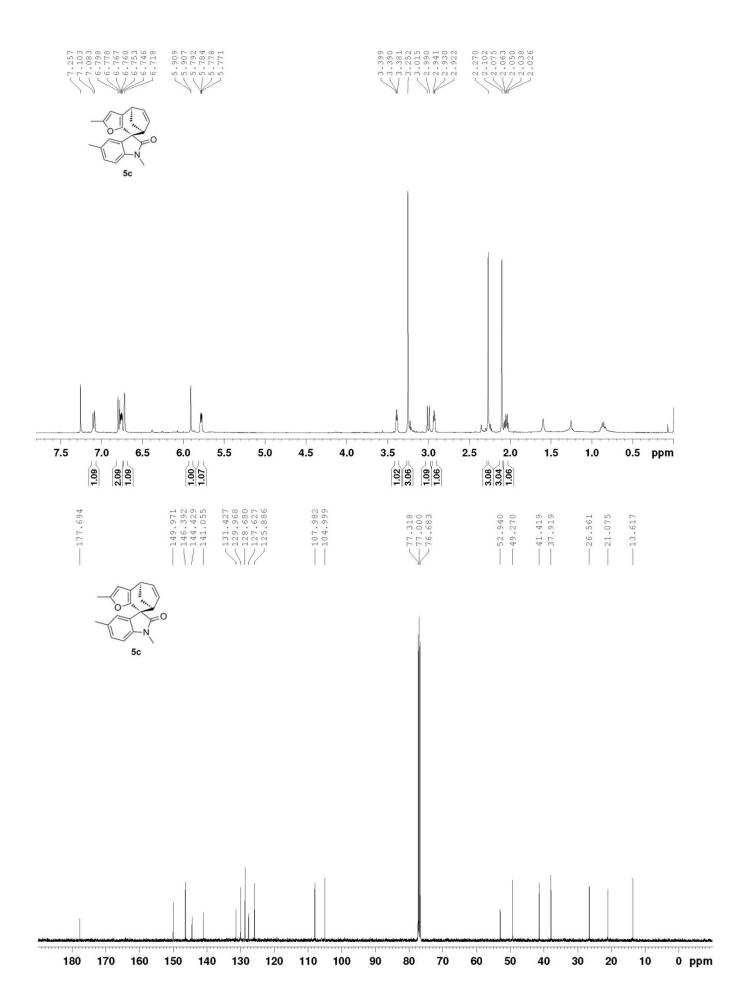


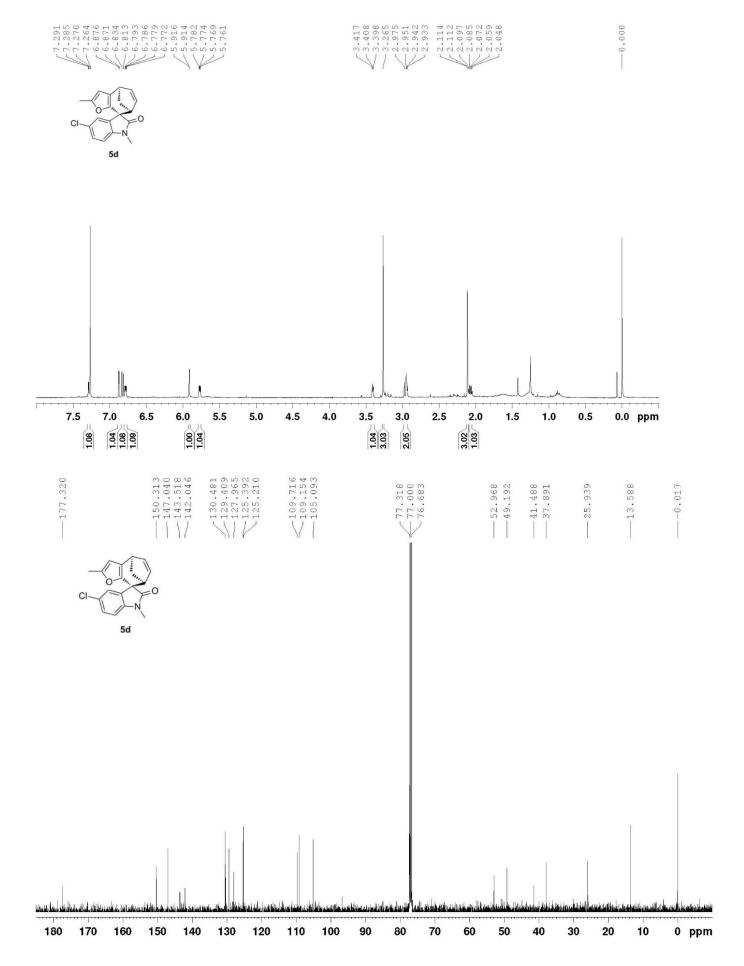


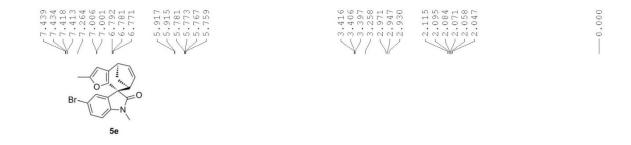


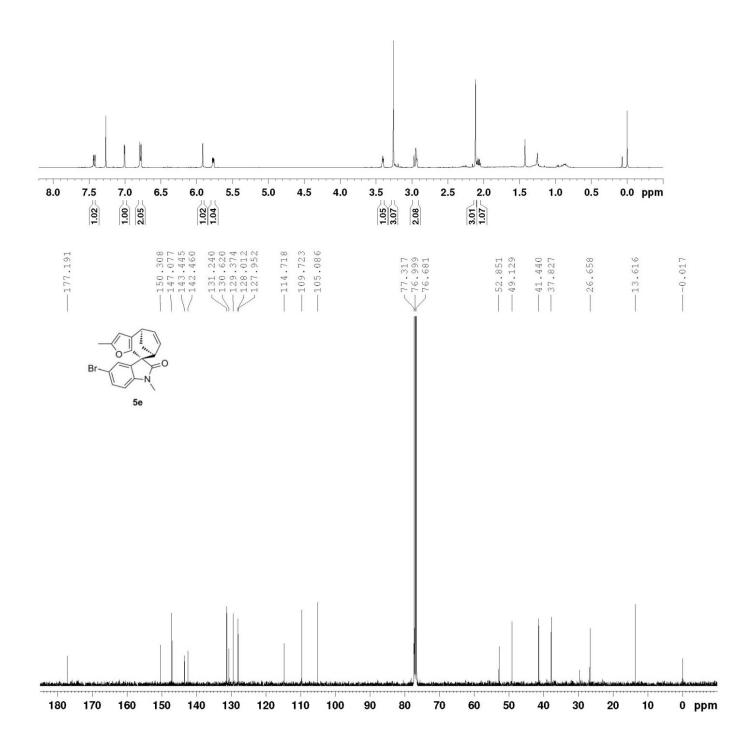


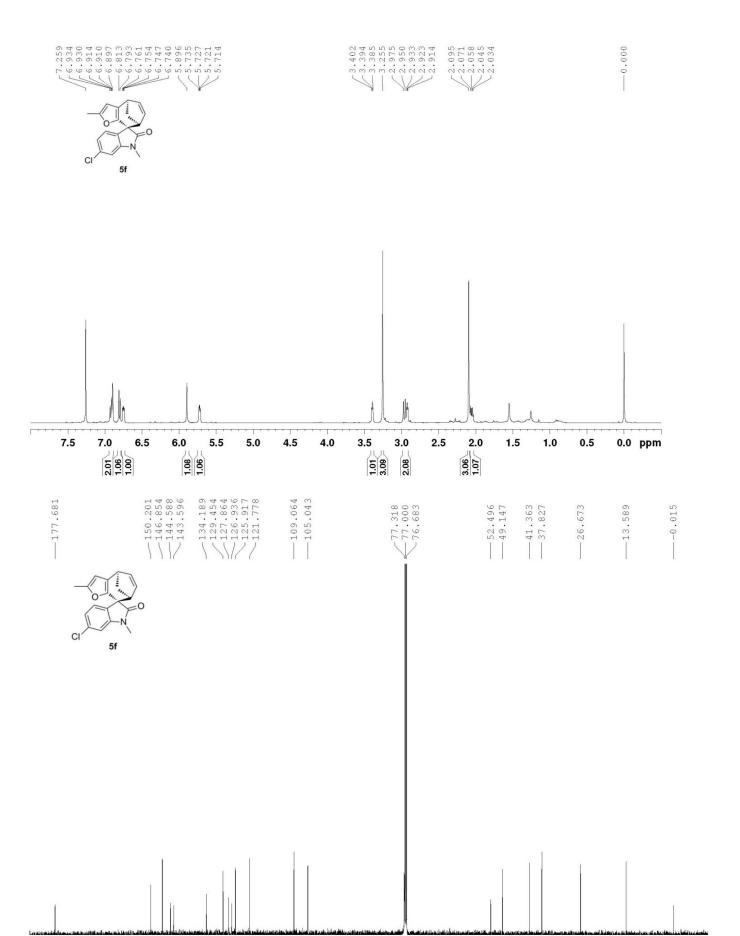


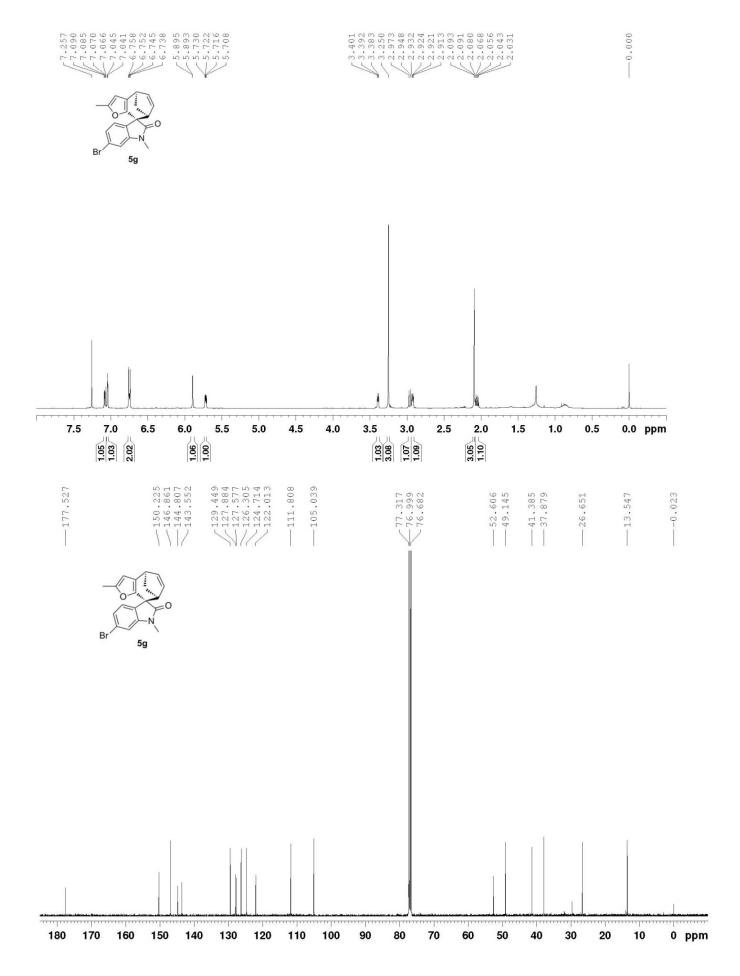


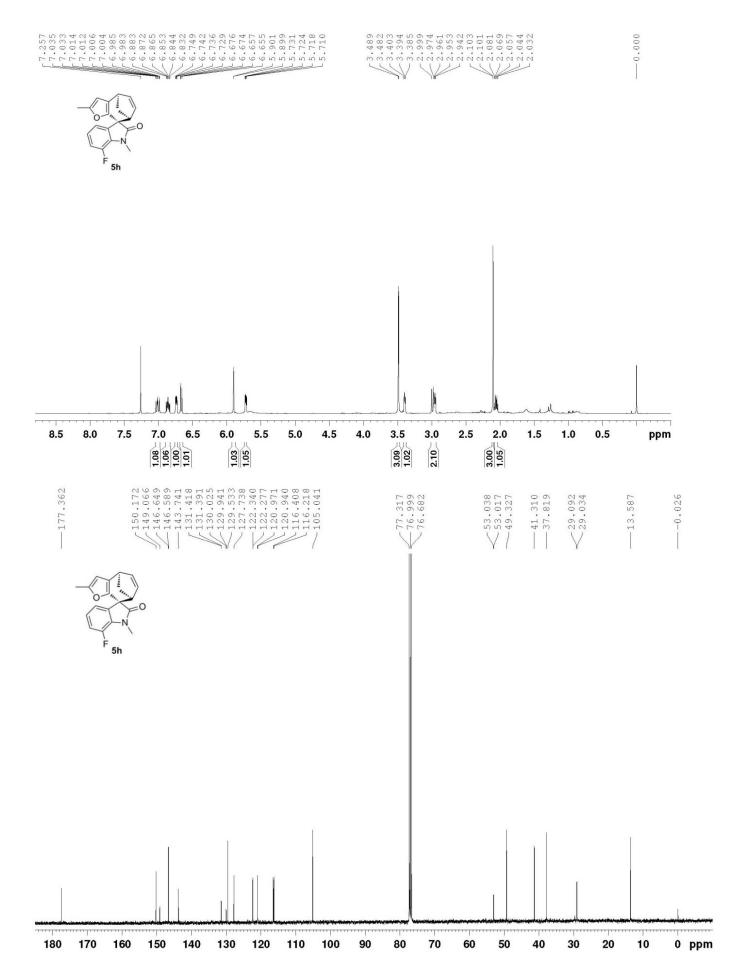


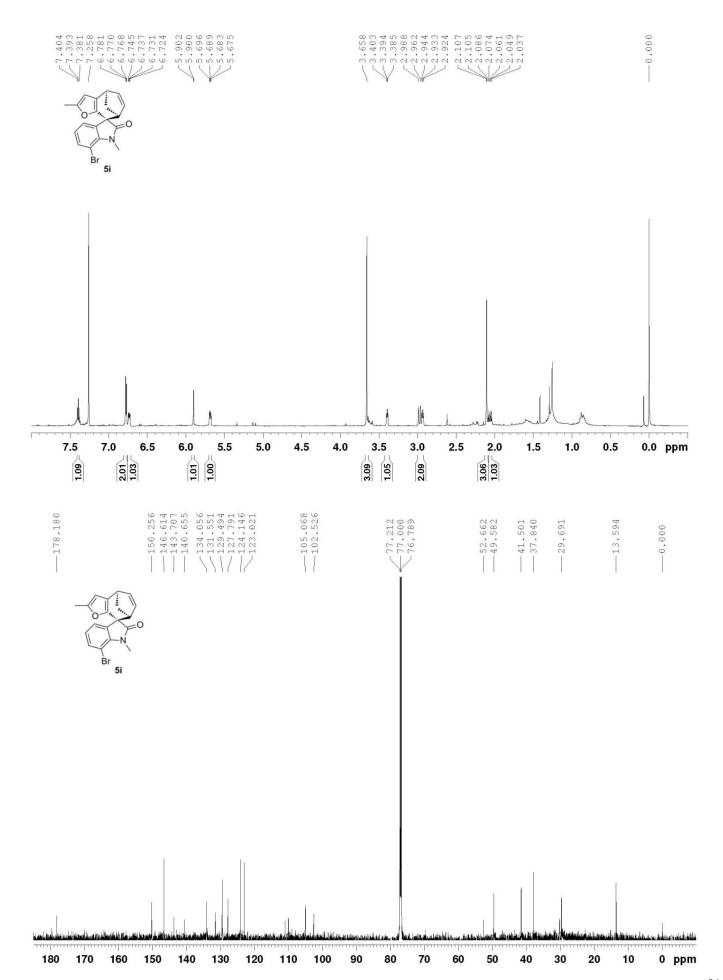


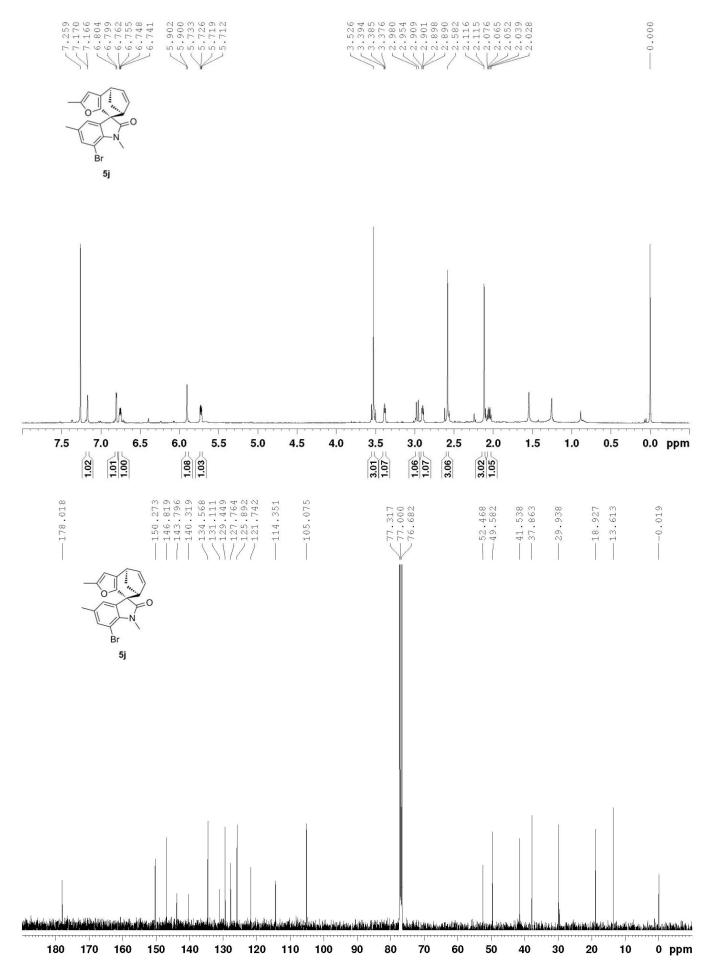


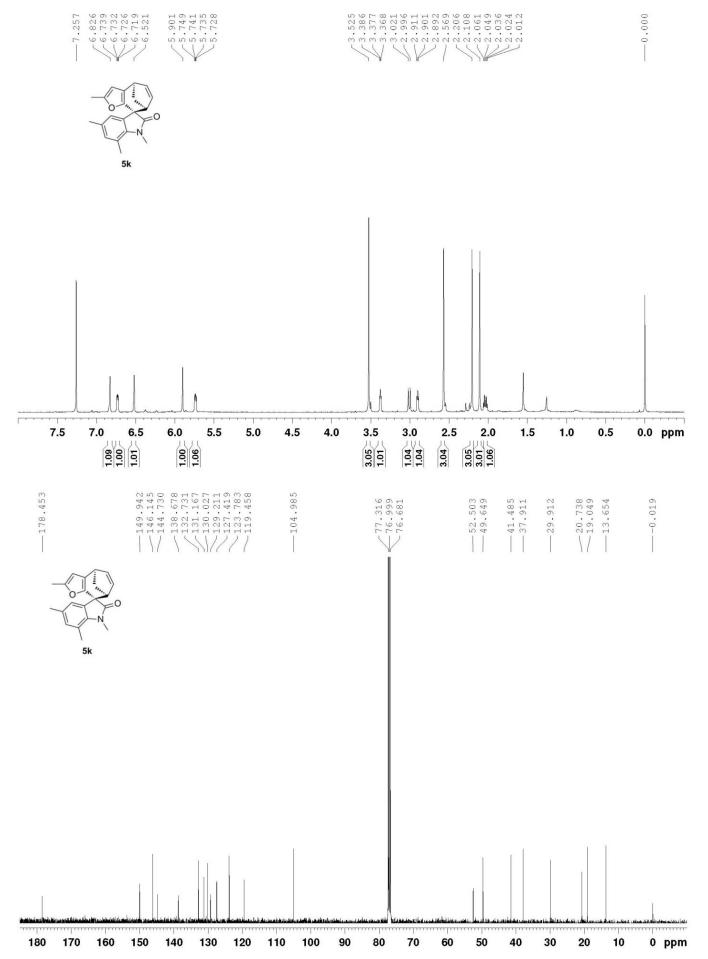











0 ppm

