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Fig. S1. TEM images of (a) W4, (b) W6 and (c) W8.
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Fig. S2. SEM images of (a) W4, (b) W6 and (c) W8.
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Fig. S3. Determination of lateral size (L) of the Bi2WO6 samples (W1, W4, W6, and 

W8) by statics of more than 100 pieces of nanosheets in the SEM image, respectively. 



The solid lines were obtained by fitting the data to a Gaussian model and the numbers 

in the figure are the L values.

10 20 30 40 50 60
0

10

20

30

40

50

Pe
rc

en
tag

e (
%

)

 

 

Thickness (nm)

16 nm

W1

10 20 30 40 50
0

10

20

30

40
W4

Thickness (nm)

Pe
rc

en
ta

ge
 (%

)

 

 

25 nm

20 40 60 80
0

10

20

30

40

50
W6

Thickness (nm)

Pe
rc

en
tag

e (
%

)

 

 

34 nm

50 100 150 200
0

6

12

18

24

30
W8

Pe
rc

en
tag

e (
%

)

Thickness (nm)

 

 

93 nm

Fig. S4. Determination of average thickness (H) of the Bi2WO6 samples (W1, W4, 

W6, and W8) by statics of more than 100 pieces of nanosheets in the SEM images. 

The solid lines were obtained by fitting the data to a Gaussian model and the numbers 

in the figure are the H values. 



 

 

Fig. S5. SEM images of (a) W1, (b) W4, (c) W6, and (d) W8. The dotted lines show 

the stacked nanosheet structures.
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Fig. S6. Adsorptions of (a) RhB, (b) MB, and (c) EY on the Bi2WO6 samples.
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Fig. S7. Photodegradation data of (a) RhB, (b) MB, and (c) EY on Bi2WO6 

nanosheets, fitted to a pseudo-first-order kinetic model. 

Because self-degradations of the MB and EY are prominent (Fig. 6b, c), their 

influences can’t be neglected. Provided that effects of nanoparticles and dye 

concentration differences between pure dye solutions and W1‒W8 dye suspensions on 

the self-degradation of dyes are negligible, we can obtained:

-ln(Ct/C0t) = ktt                                   (1)

and



-ln(Cb/C0b) = kbt                                  (2)

where Ct, C0t and kt are the dye concentration at any time, the initial dye concentration 

and the pseudo-first-order kinetic rate constant for W1‒W8 suspensions, and Cb, C0b 

and kb are those for pure dye solution.

In association of Equation (1) and (2), the rate constant (k) excluding the influence 

of the self-degradations of dyes can be gained:

kt = (kt ‒ kb)t = ln((C0t·Cb)/(Ct·C0b))                  (3).
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Fig. S8. Zeta potentials of W1 to W8.
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Fig. S9. PL spectra of Bi2WO6 samples with excitation wavelength of 300 nm. 
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Fig. S10. Variations of specific surface are (SBET)-normalized pseudo-first-order rate 

constant (k’) with lateral size of nanosheets (L). 



S1. Relationship between nanosheet thickness and specific surface area

Assuming that the nanoparticles were completely dispersed nanosheets and the top 

and bottom surfaces of the nanosheets are the same regular polygon with n (n ≥ 4) 

sides and side length of a, we can get

m = ρHs = ρHna2/[4tan(π/n)]                       (4)

where m, ρ, H, s is the mass, the density, the thickness and the area of top or bottom 

surface of a nanosheet (which can be divided into the same n triangles), respectively,

and

S = naH + 2s = na{H + a/[2tan(π/n)]}               (5)

where S is the surface area of a nanosheet.

In association of Equation (4) and (5), the specific surface area (S’) can be figured 

out:

S’ = S/m = 2/ρ(1/H + 2/L)  (n is an even number)       (6)

or

S’ = 2/ρ{1/H + [1+1/cos(π/n)]/L}  (n is an odd number)

≈ 2/ρ(1/H + 2/L)                                  (7)

where L is the lateral size of a nanosheet, as shown in Scheme 1.
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Scheme 1 Schematic illustrations of lateral size (L) of a regular n-side polygon when 

n is an even and an odd number, respectively.
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Fig. S11. Changes of H−1, 2L−1 and H−1+2L−1 from W1 to W8.


