Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Facile O-Glycosylation of Glycals Using Glu-Fe₃O₄-SO₃H, a Magnetic Solid Acid Catalyst

Raju S. Thombal and Vrushali H. Jadhav *

Department of Organic Chemistry, National Chemical Laboratory (CSIR-NCL), Pune-411008, India. Email:

vh.jadhav@ncl.res.in

Table 2, Entry 3, 10a: Clear oil (97%, α:β = 83:17); $R_f = 0.3$ (20% EtOAc/ Pet ether); IR (CHCl₃) 2931, 2873, 1594, 1448, 1374, 1216, 1029, 846, 763, 669 cm ⁻¹; Data for major α isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.25 (m, 15H), 5.82 (d, *J* = 3.6 Hz, 1H), 5.25 (d, *J* = 3.6 Hz, 1H), 4.93 (d, *J* = 11.5 Hz, 1H), 4.68 (d, *J* = 3.6 Hz, 1H), 4.62- 4.56 (m, 3H), 4.52 (d, *J* = 11.5 Hz, 1H), 4.43 (d, *J* = 11.9 Hz, 1H), 4.22 (d, *J* = 2.8 Hz, 1H), 4.19-4.14 (m, 1H), 4.09-4.06 (m, 2H), 3.99-3.84 (m, 4H), 3.66-3.60 (m, 1H), 3.55-3.52 (m, 1H), 2.23 (dt, *J* = 13.7 and 3.6 Hz, 1H), 2.00 (dd, *J* = 12.8 and 3.6 Hz, 1H), 1.47 (s, 3H), 1.39 (s, 3H), 1.32 (s, 3H), 1.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 138.3, 138.0, 128.4, 128.3, 128.2, 128.1, 127.7 127.6, 127.6, 127.5, 127.3, 111.8, 109.1, 105.2, 99.4, 83.5, 81.2, 80.8, 74.3, 74.2, 73.6, 73.0, 72.5, 70.9, 70.4, 70.0, 67.6, 31.0, 26.8, 26.7, 26.1, 25.3; HRMS (ESI): calcd. for C₃₉H₄₈O₁₀Na 699.3140, found 699.3138. (NMR data are consistent with the literature)⁴.

Table 3, Entry 1, 10b, Colourless syrup (82%, only α); $R_f = 0.2$ (10% EtOAc/ Pet ether); IR (CHCl₃) 3017, 2925, 2869, 1454, 1362, 1217, 1093, 1029, 768, 668 cm⁻¹; Data for major α isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.22 (m, 15H), 5.03 (bs, 1H), 4.94 (dd, J = 11.9 and 4.5 Hz, 1H), 4.63 (d, J = 4.6 Hz, 1H), 4.61 (bd, J = 3.2 Hz, 2H), 4.52-4.41 (q, 2H), 4.09-4.05 (q, 1H), 3.95-3.92 (m, 2H), 3.59-3.56 (m, 2H), 3.33-2.26 (m, 1H), 2.23-2.13 (m, 1H), 2.11-1.98 (m, 3H), 1.65-1.58 (m, 3H), 1.19-1.34 (bs, 1H), 1.20-1.15 (m, 1H), 1.0-0.92 (m, 2H), 0.91 (dd, J = 7.3 and 4.5 Hz, 3H), 0.82 (m, 3H), 0.75 (dd, J = 6.9 and 4.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.9, 138.5,

138.1, 128.3, 128.2, 128.1, 127.5, 127.4, 127.2, 99.7, 79.9, 74.9, 74.1, 73.3, 73.1, 70.3, 69.8, 69.6, 48.8, 42.8, 34.3, 31.6, 31.6, 25.7, 23.2, 22.2, 21.1, 16.3; HRMS (ESI): calcd. for C₃₇H₄₈O₅Na 595.3394, found 595.3383.

Table 3, Entry 2, 10c, White solid (89%, α), mp. 135 °C; R_f = 0.3 (10% EtOAc/ Pet ether); IR (CHCl₃) 2953, 2856, 1593, 1471, 1371, 1218, 1085, 1031, 768, 670 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.22 (m, 15H), 5.25 (d, *J* = 4.6 Hz, 1H), 5.14 (d, *J* = 3.2 Hz, 1H), 4.93 (d, *J* = 11.9 Hz, 1H), 4.63 (s, 1H), 4.60 (bs, 2H), 4.52-4.41 (q, 2H), 4.02-3.93 (m, 3H), 3.63-3.55 (m, 2H), 3.48-3.41 (m, 1H), 2.29-2.16 (m, 3H), 2.02-1.91 (m, 3H), 1.88-1.78 (m, 3H), 1.60-1.40 (m, 9H), 1.38-1.30 (m, 4H), 1.27-1.21 (m, 1H), 1.18-1.07 (m, 5H),1.05-1.00 (m, 2H), 0.99 (s, 3H), 0.91 (d, *J* = 6.4 Hz, 3H), 0.87 (d, *J* = 1.3 Hz, 3H), 0.85 (d, *J* = 1.8 Hz, 3H), 0.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 138.9, 138.6, 138.1, 128.3, 128.3, 128.1, 127.7, 127.5, 127.4, 127.3, 121.6, 95.6, 76.1, 75.0, 74.2, 73.4, 73.1, 70.4, 69.8, 69.6, 56.7, 56.1, 50.0, 42.3, 40.0, 39.7, 39.5, 37.0, 36.7, 36.1, 35.7, 31.9, 31.8, 31.6, 28.2, 28.0, 27.8, 24.2, 23.8, 22.8, 22.5, 21.0, 19.3, 18.7, 11.8; HRMS (ESI): calcd. for C₅₄H₇₄O₅Na 825.5434, found 825.5438.

Table 3, Entry 3, 10d, Liquid (91%, only α), R_f = 0.2 (10% EtOAc/ Pet ether); IR (CHCl₃) 3018, 2928, 2864, 1457, 1363, 1216, 1161, 1098, 1061, 797, 668 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.22 (m, 15H), 4.96 (bd, *J* = 3.1 Hz, 1H), 4.93 (d, *J* = 11.5 Hz, 1H), 4.62 (d, *J* = 11.5 Hz, 1H), 4.60 (m, 2H), 4.49-4.41 (q, *J* = 11.9 Hz, 2H), 3.95-3.82 (m, 3H), 3.67-3.51 (m, 3H), 3.48-3.32 (m, 1H), 2.25-1.96 (m, 2H), 1.60-1.51 (m, 2H), 1.27 (bs, 10H), 0.87 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100

MHz, CDCl₃) δ 138.9, 138.5, 138.3, 128.4, 127.2, 97.7, 74.9, 74.2, 73.5, 73.0, 70.4, 69.7, 69.5, 31.8, 31.2, 29.5, 29.4, 29.2, 29.2, 26.2, 22.6, 14.1; HRMS (ESI): calcd. for C₃₅H₄₆O₅Na 569.3237, found 569.3235.

Table 3, Entry 4, 10e, liquid (96%, α:β = 71:29); $R_f = 0.2$ (20% EtOAc/ Pet ether); IR (CHCl₃) 3305, 3020, 2919, 2871, 2404, 1492, 1361, 1217, 1097, 1037, 768, 671 cm⁻¹; Data for major α isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.26 (m, 15H), 5.15 (d, J = 3.2 Hz, 1H), 4.93 (d, J =11.5 Hz, 1H), 4.67-4.57 (m, 3H), 4.51-4.41 (q, 2H), 4.18 (t, J = 2.7 Hz, 2H), 3.95-3.88 (m, 3H), 3.62-3.54 (m, 2H), 2.38 (t, J = 2.7 Hz, 1H), 2.30-2.23 (dt, J = 12.8 and 3.7 Hz, 1H), 2.06-2.01 (dd, J = 12.8 and 4.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.8, 138.5, 138.0, 128.3, 128.2, 127.8, 127.7, 127.5, 127.2, 96.6, 79.3, 74.5, 73.4, 72.8, 70.3, 70.2, , 69.3, 54.1, 30.8; HRMS (ESI): calcd. for C₃₀H₃₂O₅Na 495.2142, found 495.2142. (NMR data are consistent with the literature)⁵

Table 3, Entry 5, 10f, Liquid (94%, only α); $R_f = 0.3$ (20% EtOAc/ Pet ether); IR (CHCl₃) 2922, 2858, 1454, 1357, 1128, 1091, 1053, 1028, 943, 881, 754, 736 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.15 (m, 15H), 4.93 (d, J = 11.6 Hz, 1H), 4.87 (d, J = 2.7 Hz, 1H), 4.62 (d, J = 11.6 Hz, 1H), 4.59 (s, 2H), 4.51 (d, J = 11.9 Hz, 1H), 4.42 (d, J = 11.9 Hz, 1H), 3.93-3.85 (m, 3H), 3.62-3.55 (m, 2H), 3.32 (s, 3H), 2.22 (dt, J = 12.4 and 3.4 Hz, 1H), 1.99 (dd, J = 8.5 and 4.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 138.8, 138.5, 138.1, 128.4, 128.3, 128.2, 128.2, 127.7, 127.6, 127.5, 127.2, 98.9, 77.3, 76.7, 74.7, 74.2, 73.4, 72.9, 70.4, 69.7, 69.6, 54.8, 31.1; HRMS (ESI): calcd. for C₂₈H₃₂O₅Na 471.2142, found 471.2140.

Table 3, Entry 6, 10g, Colorless oil (88%, α:β = 91:9); $R_f = 0.6$ (20% EtOAc/ Pet ether); IR (CHCl₃) 2953, 2929, 2856, 1471, 1371, 1251, 1085, 1074, 1022, 833, 775 cm⁻¹; Data for major α isomer: ¹H NMR (400 MHz, CDCl₃) 5.84 (d, J = 3.4 Hz, 1H), 5.1 (d, J = 3.0 Hz, 1H), 4.64 (d, J = 3.5 Hz, 1H), 4.22-4.18 (m, 2H), 4.13-4.08 (m, 2H), 4.00-3.96 (m, 2H), 3.83 (s, 1H), 3.75-3.63 (m, 3H), 2.1 (dt, J = 12.2 and 3.7 Hz, 1H), 1.65 (dd, J = 12.2 and 4.4 Hz, 1H), 1.49 (s, 3H), 1.41 (s, 3H), 1.33 (s, 3H), 1.30 (s, 3H) 0.91 (s, 27H), 0.11 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.08 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 111.7, 109.0, 105.3, 100.0, 83.7, 81.5, 81.2, 73.6, 72.6, 70.3, 68.0, 67.6, 63.1, 33.6, 27.0, 26.7, 26.3, 26.1, 26.0, 25.9, 25.3, 18.5, 18.4, 18.3, -3.8, -4.3, -4.6, -4.9, -5.3, -5.3; HRMS (ESI): calcd. for C₃₆H₇₂O₁₀Si₃Na 771.4325, found 771.4322. (NMR data are consistent with the literature)⁴.

Table 3, Entry 8, 10h, Clear oil (84%, α : β = 77:23); R_f = 0.3 (20% EtOAc/ Pet ether); IR (CHCl₃) 2985, 2935, 2873, 1452, 1371, 1213, 1089, 1061, 1026, 846, 734, 696 cm⁻¹; Data for major α isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.16 (m, 15H), 5.82 (d, *J* = 3.6 Hz, 1H), 5.25 (d, *J* = 3.6 Hz, 1H), 4.89 (d, *J* = 11.5 Hz, 1H), 4.68-4.60 (m, 4H), 4.54-4.48 (m, 2H), 4.24 (d, *J* = 2.8 Hz, 1H), 4.15-4.05 (m, 2H), 3.99-3.91 (m, 2H), 3.80-3.75 (m, 2H), 3.73-3.69 (m, 1H), 3.67-3.58 (m, 2H), 2.28 (dt, *J* = 13.7 and 3.6 Hz, 1H), 1.72 (dd, *J* = 12.8 and 3.6 Hz, 1H), 1.48 (s, 3H), 1.40 (s, 3H),

1.32 (s, 3H), 1.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 138.2, 138.0, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.8, 127.7, 127.6, 111.8, 109.4, 105.2, 98.6, 83.7, 81.3, 80.2, 78.1, 75.1, 73.4, 73.3, 72.4, 71.8, 71.4, 68.9, 67.7, 35.1, 29.7, 26.8, 26.1, 25.4; HRMS (ESI): calcd. for C₃₉H₄₈O₁₀Na 699.3140, found 699.3138.

Table 3, Entry 9, 10i, Colorless syrup (80%, α:β=83:17); $R_f = 0.2$ (10% EtOAc/ Pet ether); IR (CHCl₃) 3017, 2925, 2869, 1454, 1362, 1217, 1093, 1029, 768, 668 cm⁻¹; Data for major α isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.36-7.26 (m, 15H), 5.01 (d, J = 3.1 Hz, 1H), 4.89 (d, J = 10.7 Hz, 1H), 4.66-4.63 (m, 3H), 4.50-4.48 (m, 2H), 4.01-3.92 (m, 2H), 3.79 (dd, J = 10.3 and 3.9 Hz, 1H), 3.67-3.65 (dd, J = 8.2 and 3.6 Hz, 1H), 3.59 (t, J = 9.4 Hz, 1H), 3.32-3.27 (ddd, J = 10.6 and 4.2 Hz, 1H), 2.28-2.24 (m, 1H), 2.11-2.09 (m, 1H), 2.04-1.98 (m, 1H), 1.71-1.64 (m, 1H), 1.63-1.59 (m, 3H), 1.35-1.32 (m, 1H), 1.23-1.13 (m, 1H), 0.99-0.93 (m, 2H), 0.90 (d, J = 7.0 Hz, 3H), 0.83 (d, J = 6.7 Hz, 3H), 0.75 (d, J = 7.1, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 138.7, 138.5, 138.2, 128.3, 127.9, 127.9, 127.7, 127.5, 99.5, 80.5, 78.4, 77.7, 77.3, 76.7, 74.9, 73.4, 71.7, 70.8, 69.0, 48.7, 43.0, 36.0, 34.3, 31.6, 25.7, 23.3, 22.3, 21.1, 16.3; HRMS (ESI): calcd. for C₃₇H₄₈O₅Na 595.3394, found 595.3389.

Table 3, Entry 10, 10j, White solid (83%, α : β =77:23); mp 133 °C, R_f = 0.2 (10% EtOAc/ Pet ether); IR (CHCl₃) 2953, 2856, 1593, 1471, 1371, 1218, 1085 cm⁻¹; Data for major α isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.18 (m, 15H), 5.27 (d, *J* = 4.9 Hz, 1H), 5.14 (d, *J* = 2.5 Hz, 1H), 4.89 (bd, *J* = 10.8 Hz, 1H) 4.13 (d, *J* = 2.5 Hz, 1H), 4.89 (d, *J* = 10.8 Hz, 1H), 4.70-4.56 (m, 4H),

4.54-4.42 (m, 2H), 4.04-3.99 (m, 1H), 3.87-3.55 (m, 4H), 3.50-3.39 (m, 1H), 2.34-2.23 (m, 3H), 2.02-1.91 (m, 2H), 1.89-1.78 (m, 4H), 1.53-1.22 (m, 12H), 1.19-1.04 (m, 6H), 0.99 (s, 3H), 0.91 (d, J = 6.4 Hz, 3H), 0.87 (d, J = 1Hz, 3H), 0.85 (d, J = 1Hz, 3H), 0.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 138.8, 138.5, 138.1, 128.3, 128.2, 127.9, 127.8, 127.6, 127.5, 127.4, 121.6, 95.0, 75.8, 75.0, 74.9, 73.4, 73.3, 70.6, 69.4, 69.9, 56.7, 56.1, 50.0, 42.3, 39.9, 39.7, 39.5, 37.0, 36.7, 36.1, 35.7, 31.9, 31.8, 28.2, 28.0, 27.6, 24.2, 23.8, 22.8, 22.5, 21.0, 19.3, 18.7, 11.8; HRMS (ESI): calcd. for C₅₄H₇₄O₅Na 825.5434, found 825.5438.

Table 3, Entry 11, 10k, liquid (80%); (91: 9^a , $50:50^b$, $90:10^c$); $a = \alpha:\beta$ ratio of 2-deoxy-*O*-glycoside, b = Ratio of the Ferrier product and 2-deoxy-*O*-glycoside, $c = \alpha:\beta$ ratio of the Ferrier product.

Table 3, Entry 12, 10l, liquid (93%); (90: 10^{a} , $50:50^{b}$, $83:27^{c}$); $a = \alpha:\beta$ ratio of 2-deoxy-*O*-glycoside, b = Ratio of the Ferrier product and 2-deoxy-*O*-glycoside, $c = \alpha:\beta$ ratio of the Ferrier product. This compound is previously reported.

Table 3, Entry 13, 10m, Clear oil (94%); (69: 31^a, 38:62^b, 91:9^c); $a = \alpha:\beta$ ratio of 2-deoxy-*O*-glycoside, b = Ratio of the Ferrier product and 2-deoxy-*O*-glycoside, $c = \alpha:\beta$ ratio of the Ferrier product. This compound is previously reported³.

Table 3, Entry 14, 10n, Colorless oil (81%, α:β =91:9); $R_f = 0.3$ (10% EtOAc/ Pet ether); IR (CHCl₃) 2953, 2929, 2856, 1471, 1371, 1251, 1085, 1074, 1022, 833, 775 cm⁻¹; Data for major α isomer: ¹H NMR (400 MHz, CDCl₃) δ 5.87 (d, J = 3.5 Hz, 1H), 5.2 (s, 1H), 4.72 (d, J = 3.5 Hz, 1H), 4.34-4.30 (m, 1H), 4.24-4.19 (m, 1H), 4.14-4.10 (m, 2H), 4.01-3.96 (m, 1H), 3.93-3.87 (m, 1H), 3.78-3.66 (m, 2H), 2.16-2.02 (m, 1H), 2.71 (m, 1H), 1.50 (s, 3H), 1.42 (s, 3H), 1.34 (s, 3H), 1.31 (s, 3H) 0.93 (s, 6H), 0.90 (s, 18H), 0.10 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 111.8, 109.1, 105.4, 98.9, 83.7, 81.5, 81.4, 77.3, 76.7, 75.0, 73.0, 72.5, 70.7, 67.7, 63.3, 29.7, 27.0, 26.8, 26.5, 26.3, 26.2, 26.1, 26.0, 25.9, 25.6, 25.3, 18.5, 18.3, 18.1, -3.1, -4.3, -4.6, -5.0, -5.3; HRMS (ESI): calcd. for C₃₆H₇₂O₁₀Si₃Na 771.4326, found 771.4325.

¹H and ¹³C NMR spectra

¹⁸⁰ ¹⁶⁰ ¹⁴⁰ ¹²⁰ ¹⁰⁰ ⁸⁰ ⁶⁰ ⁴⁰ ²⁰ ⁰ ⁰ ¹³C NMR (100 MHz, CDCl₃) spectra of compound 10b

¹³C NMR (100 MHz, CDCl₃) spectra of compound 10d

¹³C NMR (100 MHz, CDCl₃) spectra of compound 10e

¹³C NMR (125 MHz, CDCl₃) spectra of compound 10f

¹³C NMR (100 MHz, CDCl₃) spectra of compound 10g

¹³C NMR (100 MHz, CDCl₃) spectra of compound 10h

¹³C NMR (125 MHz, CDCl₃) spectra of compound 10i

¹³C NMR (100 MHz, CDCl₃) spectra of compound 10j

¹³C NMR (100 MHz, CDCl₃) spectra of compound 10k

¹³C NMR (100 MHz, CDCl₃) spectra of compound 101

¹³C NMR (100 MHz, CDCl₃) spectra of compound 10m

¹³C NMR (125 MHz, CDCl₃) spectra of compound 10n