Supplementary Information

Structural discrimination of nanosilicas particles and mixed-structure silica by multivariate analysis applied to SAXS profiles in combination with FT-IR spectroscopy

Y. P. Ruiz,^a M. F. Ferrão,^b M. B. Cardoso,^c E. A. Moncada,^d and J. H. dos Santos^{b*}

^a Departamento de Engenharia Química - Universidade Federal do Rio Grande do Sul, Rua Engenheiro Luis Englert, CEP 90040-040, Porto Alegre, RS, Brazil.

^b Instituto de Química - Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, CEP 91501-970, Porto Alegre, RS, Brazil.

^c LNLS – Laboratório Nacional de Luz Síncrotron, CEP 13083-970, Caixa Postal 6192, Campinas, SP, Brazil.

^d Instituto Tecnológico Metropolitano, Robledo, Calle 73 # 76 A 354, bloque F, Medellín, Colombia.

*Corresponding author: E-mail: <u>jhzds@iq.ufrgs.br</u>. Tel: +55 51 33087238; fax: +55 51 33087304.

CONTENTS

- 1. Methodology: synthesis of nanomaterials and FT-IR.
- 2. Nested design, the experimental approach for the syntheses of silica samples.
- **3.** BET isotherm parameters and structural parameters of the SAXS profiles of all samples.
- **4.** TGA and DTGA curves, and X-Ray diffraction spectra.
- **5.** TEM image of S_MS_NTw28.
- 6. Zeta potential of synthesized silicas.

1. Methodology

The steps involved in the synthesis of nanomaterials. Scheme S1 depicts the steps involved in the synthesis of nanosilicas S_N7CI50 (Scheme S1a) and S_N7Da28 (Scheme S1c), mixed silicas S_MS_NCI50 (Scheme S1b), and S_MS_N7Da28 (Scheme S1d), as well as the explanations for the corresponding abbreviations. For example, S_MS_N7CI50 refers to S_MS_NCI prepared with a TEOS/ethanol molar ratio of 0.07 and a TEOS/SiCl₄ molar ratio of 5.0 (Scheme 1b), and S_MS_N7Da28 refers to S_MS_NDa prepared with a TEOS/ethanol molar ratio of 0.07 and a TEOS/ethanol molar ratio of 0.07 and an ODA molar amount of 0.0028 (Scheme 1d).

Scheme S1. Steps employed for the synthesis of S_N7CI50 (a), S_MS_N7CI50 (b), S_N7Da28 (c), and S_MS_N7Da28 (d) using a TEOS/ethanol molar ratio of 0.07, a TEOS/SiCl₄ molar ratio of 5.0, and 0.0028 mol of ODA.

Infrared Fourier transmission spectroscopy. An analysis of the absorbance modes was performed by co-adding 32 scans with 4 cm⁻¹ of resolution. The characteristic spectral bands of the harmonic vibrations of the silica material networks $[v_{as(Si-O(-Si))}]$ were studied by FT-IR in the region of 1300-1000 cm⁻¹. ^{1, 2} The broad band between 1300 - 1000 cm⁻¹ was deconvoluted via Gaussian functions into the following four independent components: two (TO₄ and TO₆) associated with the transverse-optic (TO) modes and two (LO₄ and LO₆) with

the longitudinal-optic (LO) modes of Si-O-Si using a non-linear least-squares fitting method.³ The percentage of six-fold siloxane rings ((SiO)₆) in the silica network was estimated using the following ratio of fitted areas: 2,3

$$\%((\text{SiO})_6) = \frac{[A(\text{LO}_6) + A(\text{TO}_6)]}{[A(\text{LO}_6) + A(\text{TO}_6) + A(\text{LO}_4) + A(\text{TO}_4)]} * 100$$
(S1)

According to Fidalgo et al.,⁴ LO mode is particularly sensitive to the introduction of chemical groups or organic molecules into the silica network. In this paper, the longitudinal-optical (LO) percentage in the silica network (% LO) was estimated as the following ratio of fitted areas: ^{3, 4}

$$\%(LO) = \frac{[A(LO_6) + A(LO_4)]}{[A(LO_6) + A(TO_6) + A(LO_4) + A(TO_4)]} * 100$$
(S2)

The proportion of silanol groups in $S_M S_N$ versus S_M was estimated using the ratio of integrated areas (A) of the bands related to silanol [A(Si-OH)] and the silica backbone $[A(v_{as(Si-O(-Si))})], [A(v_{s(Si-O(-Si))})]$ (Eq. (3)): ²⁻⁴

$$\%(\text{Si} - \text{OH}) = \frac{A(\nu_{(\text{Si} - \text{OH})})}{A(\nu_{as(\text{Si} - \text{O}(-\text{Si}))}) + A(\nu_{s(\text{Si} - \text{O}(-\text{Si}))}) + A(\nu_{(\text{Si} - \text{OH})})} * 100$$
(S3)

2. Nested Design

Scheme S2. The experimental approach for the syntheses of silica samples.⁵

3. The N₂ adsorption-desorption isotherms.

Table S1. BET isotherm parameters (S_{BET} , V_p , and Dp_{BJH}), structural parameters of the SAXS profiles, Rg_H and $P_H = 4$ from the high-q region, Rg_M and P_M from the mid-q region and P_L from the low-q region obtained through a unified fit.

Comple	S _{bet}	Vрын	Dр _{він}	High	n-q region		Low-q region		
Sample		-	-	Rg _H ^{a)}	Rp _H ^{b)}	Rg _H	Rp _н		
	(m ² .g ⁻¹)	(cm ³ .g ⁻¹)	(nm)	(nm)	(nm)	(nm)	(nm)	PH.	PL
S _M	272 ± 6.7	1.47 ± 0.5	15.7 ± 0.9	1.06	1.37 ± 0.3	5.73	7.39 ± 1.2	4.2	2.3
S _{N3}	337 ± 24.0	0.73 ± 1.0	10.6 ± 0.7	0.40	0.50 ± 0.0	5.40	7.00 ± 1.2	4.0	2.8
S _N 7	369 ± 19.3	0.96 ± 0.1	9.3 ± 0.3	0.36	0.47 ± 0.0	7.28	9.39 ± 1.4	3.9	2.8
S _N 10	326 ± 17.1	0.95 ± 0.0	11.3 ± 0.2	0.41	0.53 ± 0.2	9.64	12.44 ± 1.2	4.0	2.0
S _M S _N 3	210 ± 7.0	1.03 ± 0.5	11.0 ± 1.2	0.40	0.50 ± 0.5	6.60	8.50 ± 0.2	4.0	2.6
S _M S _N 7	313 ± 7.4	0.87 ± 0.0	9.4 ± 1.4	0.36	0.47 ± 0.0	7.55	9.74 ± 0.1	3.9	2.9
SmSn10	298 ± 27.0	1.15 ± 0.1	14.2 ± 0.3	0.41	0.53 ± 0.2	12.57	16.21 ± 1.6	4.0	1.8
S _N 3Cl10	545 ± 20.0	0.16 ± 0.0	2.6 ± 0.1	0.40	0.60 ± 0.0	4.80	6.20 ± 2.1	3.0	3.8
S _N 3Cl30	731 ± 14.0	0.42 ± 0.2	2.8 ± 0.3	0.40	0.61 ± 0.0	2.10	2.70 ± 0.0	3.5	3.7
S _N 7Cl30	714 ± 10.4	0.17 ± 0.0	2.6 ± 0.0	0.76	0.98 ± 0.0	3.05	3.93 ± 0.1	4.0	3.8
S _N 7Cl50	522 ± 2.0	0.11 ± 0.0	2.6 ± 0.1	0.40	0.50 ± 0.0	2.40	3.00 ± 0.2	4.0	3.8
S _N 10Cl40	588 ± 21.4	0.08 ± 0.0	3.5 ± 0.6	0.42	0.55 ± 0.0	2.58	3.33 ± 0.3	4.0	3.8
S _N 10Cl80	620 ± 27.1	0.10 ± 0.0	2.6 ± 0.8	0.41	0.53 ± 0.0	2.43	3.14 ± 0.1	4.0	3.8
S _M S _N 3Cl10	517 ± 16.0	0.23 ± 0.0	4.0 ± 0.1	0.40	0.60 ± 0.1	5.30	6.80 ± 0.3	3.4	3.5
S _M S _N 3Cl30 ^{d)}	375 ± 17.0	0.32 ± 0.0	5.8 ± 0.3	0.50	0.60 ± 0.0	5.60	7.20 ± 0.3	3.8	3.1
S _M S _N 7Cl30	567 ± 8.3	0.25 ± 0.3	4.3 ± 0.2	0.44	0.56 ± 0.2	5.42	7.00 ± 1.1	3.6	3.3
S _M S _N 7Cl50	231 ± 2.0	0.74 ± 0.1	9.5 ± 0.7	0.80	1.10 ± 0.0	5.70	7.40 ± 1.0	4.0	3.3
S _M S _N 10Cl40	405 ± 17.1	0.11 ± 0.1	3.8 ± 0.0	0.33	0.43 ± 0.1	6.67	8.61 ± 0.2	4.0	2.5
S _M S _N 10Cl80	308 ± 21.7	0.11 ± 0.1	4.0 ± 0.1	0.43	0.55 ± 0.1	5.89	7.61 ± 1.1	3.5	3.7
S _N 7Da28	286 ± 18.0	0.42 ± 0.0	5.0 ± 0.3	0.34	0.44 ± 0.0	8.21	10.59 ± 4.0	3.6	3.0
S _M S _N 7Da28	179 ± 11.0	0.35 ± 0.5	7.1 ± 0.5	0.25	0.33 ± 0.1	10.31	13.30 ± 2.2	3.9	2.5
S _M S _N 7Da56	212 ± 6.0	0.72 ± 0.1	10.1 ± 1.0	2.00	2.58 ± 1.0	6.41	8.27 ± 1.4	3.7	2.2
S _N 7Tw28	39 ± 2.0	0.17 ± 0.0	14.6 ± 2.2	0.93	1.20 ± 0.0	22.18	28.61 ± 4.3	3.9	2.4
S _M S _N 7Tw28	150 ± 7.5	0.60 ± 0.1	12.6 ± 1.6	0.79	1.02 ± 0.1	7.97	10.29 ± 1.1	3.6	2.4
S _M S _N 7Tw56	127 ± 11.4	0.64 ± 0.0	16.4 ± 1.0	0.65	0.84 ± 0.1	16.86	21.76 ± 1.5	3.9	1.7
S _N 7Pu28	204 ± 16.3	1.21 ± 0.3	19.5 ± 2.6	0.93	1.20 ± 0.0	10.92	14.09 ± 2.1	3.7	2.7
S _M S _N 7Pu28	153 ± 10.7	0.60 ± 0.1	11.9 ± 1.1	0.65	0.84 ± 0.2	6.58	8.49 ± 1.3	3.5	2.2
S _M S _N 7Pu56	138 ± 5.5	0.75 ± 0.0	14.2 ± 1.9	0.43	0.52 ± 0.1	13.77	17.81 ± 1.1	4.0	2.8

a) Rg is the radius of gyration of the particles in each region. Rg_H at high-q region, Rg_L at low-q region, and Rg_M at mid-q region; b) and c) Rp and P are the radius of the particle and Powerlaw exponent decay extracted in each region, respectively. P_H = 4.0 at high-q region [2, 3]. d) Cl30 corresponds to TEOS/SiCl₄ molar ratio of 3.0.

4. Molecular structural characteristics

Table S2 shows the band assignments for the different investigated systems.

Table S2. Band assignments for the FT-IR spectra (region of 4000 - 400 cm⁻¹), and the correlation between the parameters % (SiO)₆, % LO and (% Si-OH) for a selected sample, obtained by deconvolution of the band from 1300 - 1000 cm⁻¹.

	Assignments ^{6,4,7,8} , wavenumber (cm ⁻¹)									(SiO)c	10	(Si-OH)
Sample	V _(OH)	Vas(Si-O(-Si))	V(Si-Od)	V _{s(Si-O(-Si))}	V _(Si-O)	Vas((C)-CH2)	Vs((C)-CH2)	V _{S(C=O)}	CO0 ⁻	(%)	(%)	(%)
S _M	3434	1104	954	800	468	2926	2904	-	-	42.6	73.8	12.5
S _N 7	3423	1095	953	796	461	2984	2906	-	-	23.7	66.3	11.6
S _M S _N 7	3425	1099	955	799	458	2987	2904	-	-	49.9	51.0	13.1
S_N7Cl30 ^{<i>a</i>)}	3416	1079	958	796	460	-	-	-	-	65.9	56.2	16.3
S _N 7Cl50 ^{b)}	3423	1075	952	795	462	-	-	-	-	46.9	51.5	20.0
S _M S _N 7Cl30	3443	1086	954	799	458	-	-	-	-	51.9	45.9	20.9
S _M S _N 7Cl50	3440	1092	956	799	464	-	-	-	-	50.3	47.3	18.1
S _N 7Da28	3444	1096	957	804	461	2924	2852	-	-	26.1	64.5	10.8
S _M S _N 7Da28	3457	1100	958	802	465	2924	2853	-	-	45.4	41.1	15.6
S _M S _N 7Da56	3448	1108	967	798	459	2920	2850	-	-	69.0	42.7	21.1
S _N 7Tw28	3429	1091	952	800	460	2935	2876	1732	1651	34.8	45.2	14.9
S _M S _N 7Tw28	3443	1094	953	803	457	2936	2893	1728	1645	44.1	38.9	29.2
S _M S _N 7Tw56	3436	1097	961	802	463	2940	2890	1725	1640	47.5	36.1	10.4
S _N 7Pu28	3438	1098	957	801	461	2978	2956	1727	1636	47.1	52.4	8.2
S _M S _N 7Pu28	3428	1097	952	796	465	2985	2941	1728	1641	55.2	40.0	3.5
S _M S _N 7Pu56	3441	1101	959	801	459	2983	2960	1722	1643	53.6	37.2	12.4

a) Cl30 and b) Cl50 correspond to TEOS/SiCl₄ molar ratio of 3.0 and 5.0, respectively.

4. TGA and DTGA curves, and X-Ray diffraction spectra

Fig. S1 (a) TGA and DTGA curves of S_M (black) and $S_M S_N 7Pu28$ (blue); heating 20 °C.min⁻¹. (b) X-Ray diffraction spectra of S_M compared with $S_M S_N Cl30$, $S_M S_N 7Da28$, $S_M S_N 7Tw28$, and $S_M S_N 7Pu28$.

S_MS_N7Tw28

5. TEM image of $S_M S_N Tw 28$

Fig. S2 TEM images of hybrid mixed-structure silicas using Tween[®]80, S_MS_NTw28.

6. Zeta potential measurments

Table S3. Zeta potential of synthesized silicas according to different employed metho	ods
to prepare the samples.	

Sample	ZP				
	(mV)				
S _M	0.06				
S _N 7	-15.03				
S _M S _N 7	-25.80				
S _N 7Cl30	-10.60				
S _N 7Cl50	-22.90				
S _M S _N 7Cl30	-9.00				
S _M S _N 7Cl50	-17.80				
S _N 7Da28	-26.50				
S _M S _N 7Da28	-0.05				
S _M S _N 7Da56					
S _N 7Tw28	-20.70				
S _M S _N 7Tw28	-19.53				
S _M S _N 7Tw56					
S _N 7Pu28	-25.53				
S _M S _N 7Pu28	-28.34				
S _M S _N 7Pu56					

References

- 1 Y. P. Moreno, M. B. Cardoso, E. A. Moncada, J. H. Z. dos Santos, *ChemPhysChem*, 2015, **16**, 2981.
- 2 A. Fidalgo, R. Ciriminna, L. Lopes, V. Pandarus, F. Béland, L. M. Ilharco, M. Pagliaro*Chemistry Central Journal*, 2013, **7**, 161.
- 3 A. Fidalgo, R. Ciriminna, L. M. Ilharco, M. Pagliaro, *Chem. Mater.*, 2005, **17**, 6686.
- 4 A. M. Fidalgo, L. M. Ilharco, *Microporous Mesoporous Mater.*, 2012, **158**, 39.
- 5 G. Keppel, *Design and analysis: A researcher's handbook, 3rd ed.;* Prentice-Hall, Inc: Englewood Cliffs, 1991; pp 594.
- 6 A. Fidalgo, L. M. Ilharco, *Chem. Eur. J.* 2004, **10**, 392-398.
- 7 T. D. Courtney, C. C. Chang, R. J. Gorte, R. F. Lobo, W. Fan, V. Nikolakis, *Microporous Mesoporous Mater.* 2015, **210**, 69.
- 8 M. R. Yu, G. Suyambrakasam, R. J. Wu, M. Chavali, *Sensors and Actuators B*, 2012, **161**, 938.