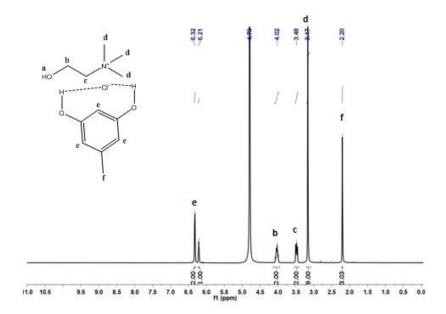
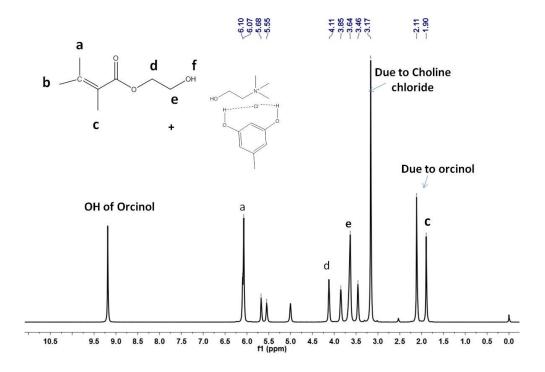
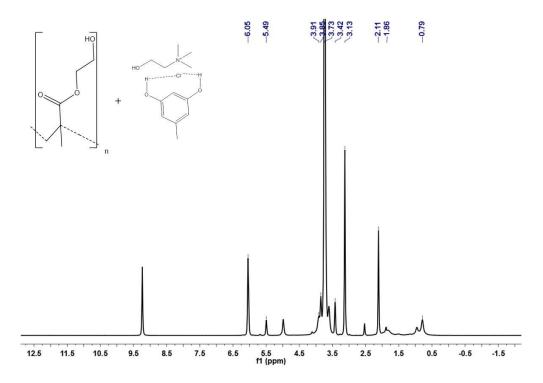
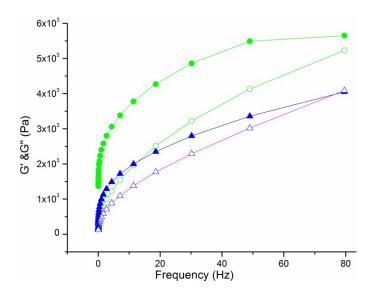
Electronic supporting information

Preparation of natural deep eutectic solvent mediated self polymerized highly flexible transparent gel having super capacitive behaviour

Chandrakant Mukesh, Rajeev Gupta, Divesh N. Srivastava, S.K. Nataraj* and Kamalesh Prasad*

Figure S1: Digital photographs of ChoCl.Or 1:1.5 in presence of HEMA in different concentrations and transparent ion gel thus formed.


Figure S2: ¹H NMR of ChoCl.Or 1:1.5

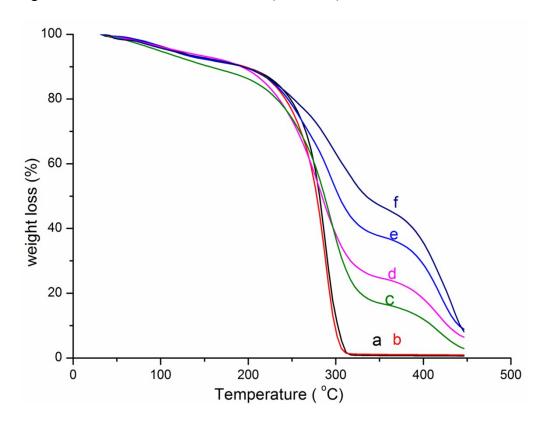

Figure S3: ¹H NMR of HEMA in ChoCl.Or 1:1.5 before polymerization.

Figure S4: ¹H NMR of HEMA in ChoCl.Or 1:1.5 after polymerization.

Figure. S5: Frequency dependence viscoelastic behavior of HEMA ionogels [closed circles /triangles = G' and open circles /triangles = G''. Blue colour for Chol.Cl-Or: HEMA (1: 0.35 v/v) and green colour for Chol.Cl-Or: HEMA (1: 0.5 v/v).

Figure S6: TGA of (a) Chol.Cl-Or, (b) unpolymerised Chol.Cl-Or: HEMA 1: 0.25 v/v), (c) polymerised (Chol.Cl-Or: HEMA 1: 0.35 v/v), (d) polymerised (Chol.Cl-Or: HEMA 1: 0.5 v/v), (e) polymerised (Chol.Cl-Or: HEMA 1: 1 v/v), (f) polymerised (Chol.Cl-Or: HEMA 1: 2 v/v).

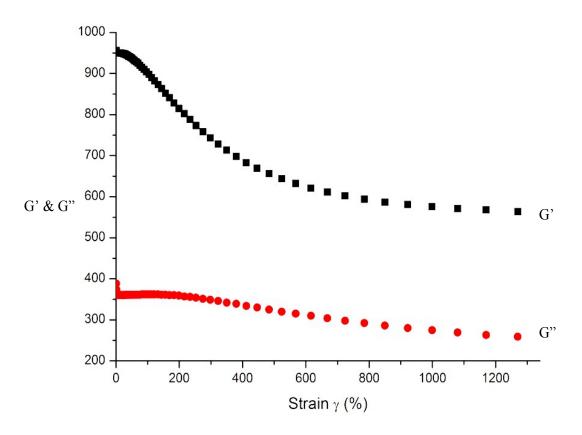
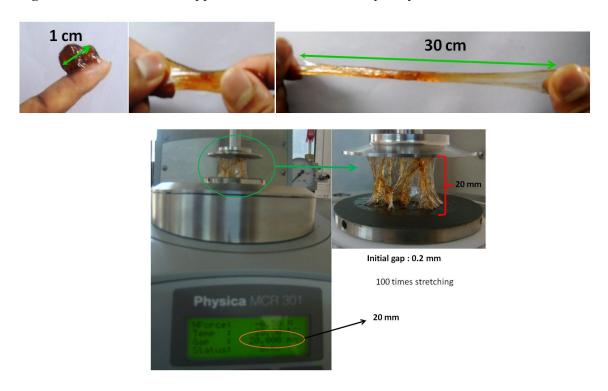



Figure S7: G' and G'' vs applied strain at constant frequency.

Strechability of the gel observed during rheological measurements.

Figure S8: Manual strechability of the HEMA ion gel prepared in ChoCl.Or 1:1.5 at 1:0.35 and strechability observed during rheological measurements.

 Table S1: Optimization of mole ratio for NADES preparation

Choline chloride and oricinol in mole ratio	Observation	Polymerization of HEMA at		
		room temperature		
1: 1	NADES formed	Took place after 24 h		
1:1.5	NADES formed	Took place within 1.5 h		

Table S2. Conductivity of ionogel calculated from the impedance measurements.

Gel Composition	R _{gel} resistance of gel (ohms)	thickness of gel, t (cm)	σ conductivity (mS.cm ⁻¹)	
		G , ()	,	
ChoCl.Or : HEMA (1:0.35)	118.7926	0.175	1.47	
ChoCl.Or: HEMA (1:0.5)	798.5015	0.175	0.21	
ChoCl.Or: HEMA (1:1)	703.3494	0.175	0.24	
ChoCl.Or: HEMA (1:2)	3535.238	0.175	0.049	
Pure (ChoCl.Or)	65.52	0.175	2.67	

Table S3. Summarised table containing specific capacitance of different ion gels at different scan rates

0.35 % (-1 to 1) 100 μg		0.5% (-1 to 1) 100 μg		1% (-1 to 1) 100 μg		0.5 % (-3.5 to 3.5) 1.5 mg	
Scan Rate (mV/s)	Sp. C (F/g)	Scan Rate (mV/s)	Sp. C (F/g)	Scan Rate (mV/s)	Sp. C (F/g)	Scan Rate (mV/s)	Sp. C (F/g)
1	355	1	265	1	110.5	-	-
2	198.5	2	143.12	2	66.6	-	-
5	86.15	5	91.65	5	34.4	-	-
10	44.6	10	40.7	10	15.82	-	-
50	11.28	50	11.28	50	4.03	50	7.84
100	6.12	100	6.26	100	2.51	100	3.77
200	4.08	200	3.22	200	1.37	200	2.76
500	1.39	500	1.42	500	0.64	500	1.24