Supporting Information for:

Aggregation-induced emission and reversible mechanochromic luminescence of carbazole-based triphenylacrylonitrile derivatives

Yong Zhan,*^a Peng Gong,^b Peng Yang,^a Zhe Jin,^a Ying Bao,^a Ying Li,^a Yongnan

Xu.*a

^a Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang

Pharmaceutical University, Ministry of Education, Shenyang, 110016, P. R. China

^b State Key Laboratory of Supramolecular Structure and Materials, College of

Chemistry, Jilin University, Changchun, 130012, P. R. China.

E-mail: zhanyong2046@126.com.

Tel: +86-024-23986449

Fig. S1 ¹H-NMR (400 MHz, DMSO-d₆) spectra of compound Cz1-TPAN.

Fig. S2 ¹³C-NMR (100 MHz, DMSO-d₆) spectrum of compound Cz1-TPAN.

Fig. S3 The MALDI/TOF MS spectrum of compound Cz1-TPAN.

Fig. S4 ¹H-NMR (400 MHz, DMSO-d₆) spectra of compound Cz2-TPAN.

Fig. S5 ¹³C-NMR (100 MHz, DMSO-d₆) spectrum of compound Cz2-TPAN.

Fig. S6 The MALDI/TOF MS spectrum of compound Cz2-TPAN.

Fig. S7 The optimized molecular configurations of Cz1-TPAN (a, b) and Cz2-TPAN (c, d) in two different views calculated by the DFT method (B3LYP/6-31G level) on Gaussian 09 software.

Fig. S8 Normalized UV-vis absorption (a) and fluorescence emission (b, $\lambda_{ex} = 400 \text{ nm}$) spectra of Cz1-TPAN in different solvents (2.0 × 10⁻⁵ M).

Fig. S9 Normalized UV-vis absorption (a) and fluorescence emission (b, $\lambda_{ex} = 420 \text{ nm}$) spectra of Cz2-TPAN in different solvents (2.0 × 10⁻⁵ M).

Fig. S10 Cyclic voltammetry diagrams of Cz1-TPAN and Cz2-TPAN in anhydrous CH_2Cl_2 with 0.1 M Bu₄NPF₆ as electrolyte at a scan rate of 50 mV/s.

Fig. S11 Maximum fluorescent emission of Cz1-TPAN upon repeating treatment of grinding and fuming with DCM.

Fig. S12 XRD patterns of **Cz2-TPAN** in as-synthesized solid states. Inset is photographs in as-synthesized solid states under UV illumination.

Fig. S13 The structure of Cz1-TPAN in single crystal.

Table S1 Electrochemical data and HOMO/LUMO energy levels of Cz1-TPAN and Cz2-TPAN.

Compounds	E _{1/2} oxa	HOMO ^b	LUMO ^b	Egc	HOMO ^d	LUMO ^d
	(V)	(eV)	(eV)	(eV)	(eV)	(eV)
Cz1-TPAN	0.88	-5.29	-2.51	2.78	-5.02	-1.94
Cz2-TPAN	0.68	-5.09	-2.35	2.74	-4.71	-1.94

^a $E_{I/2}^{ox}$ = first half-wave potential; Fc/ Fc⁺ was used as the external reference. ^b calculated using the empirical equation: $E_{HOMO} = -(E_{I/2}^{ox} + 4.41)$ and $E_{LUMO} = E_{HOMO} + E_g$. ^c Estimated from the onset of the absorption spectra ($E_g = 1240/\lambda_{onset}$). ^d Obtained from quantum chemical calculation using TDDFT/B3LYP/ 6-31G(d).