Supporting Information

Highly selective and sensitive colorimetric chemosensor for detection of Co²⁺ in a nearperfect aqueous solution

Seong Youl Lee, Jae Jun Lee, Kwon Hee Bok, So Young Kim, Cheal Kim*

Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: chealkim@seoultech.ac.kr

Fig. S1 Absorption spectral changes of **1** (20 μ M) for 1 h in the presence of 1.1 equiv of Fe²⁺ ion in bis-tris buffer solution (10 mM, pH 7).

Fig. S2 Job plot of 1 and Co^{2+} in bis-tris buffer solution (10 mM, pH 7). The total concentrations of 1 and Co^{2+} were 150 μ M.

Fig. S3 Absorption spectra of 1 (20 $\mu M)$ and 1- Co^{2+} under the anaerobic and aerobic conditions, respectively.

Fig. S4 X-band EPR spectra of $Co(NO_3)_2$ (black line) and $1 + Co(NO_3)_2$ (red line) recorded at 5 K. Dark line: the $Co(NO_3)_2$ (1 mM) solution in CH₃CN (or H₂O) was frozen in liquid nitrogen. Red line: the EPR sample was frozen in liquid nitrogen 5 min after 1 (1.2 mM) was mixed with $Co(NO_3)_2$ (1 mM) in CH₃CN (or H₂O) at room temperature.

Fig. S5 Benesi-Hildebrand plot (absorbance at 420 nm) of 1 based on UV-vis titration, assuming 1:1 stoichiometry for association between 1 and Co^{2+} .

Fig. S6 Determination of the detection limit based on change in the ratio (absorbance at 420 nm) of 1 (20 μ M) with Co²⁺.

Fig S7. (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1. (b) The major electronic transition energies and molecular orbital contributions for 1 (H = HOMO and L = LUMO).

Fig. S8 (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1- Co^{3+} . (b) The major electronic transition energies and molecular orbital contributions for 1- Co^{3+} (H = HOMO and L = LUMO).